FiNeMo hit calling report

TF-MoDISco seqlet comparisons

The following figures and statistics compare the called hits with the seqlets used by TF-MoDISco to construct each motif.

Hit vs. seqlet counts

This figure shows the number of hits called vs. the number of TF-MoDISco seqlets identified for each motif. The hit counts should be greater than the corresponding seqlet counts, since TF-MoDISco stringently filters seqlets and usually uses a smaller input window. The dashed line is the identity line.

CWMs and seqlet recall

For each motif, this table examines the consistency between hits and TF-MoDISco seqlets.

The following statistics report the number of hits, seqlets, and their relationships:

Note that the seqlet counts here may be lower than those shown in the tfmodisco-lite report due to double-counting in overlapping regions. The seqlet counts shown here are after de-duplication, while the counts in the tfmodisco-lite report are not de-duplicated.

Note that palindromic motifs may have lower recall due to disagreements on orientation. If seqlet recall is near zero for all motifs, the -W/--modisco-region-width argument is likely incorrect.

CWMs (contribution weight matrices) are average contribution scores over a set of regions. The CWMs shown here are:

The hit-seqlet correlation is the Pearson correlation between the additional-restricted-hits CWM and the seqlet CWM. This statistic measures the similarity between hits that were missed by TF-MoDISco and the seqlets used to construct the motif.

Motif Name Seqlet Recall Hit-Seqlet Correlation Hits Restricted Hits Seqlets Hit/Seqlet Overlaps Missed Seqlets Additional Restricted Hits Hit CWM (FC) Hit CWM (RC) Seqlet CWM Missed-Seqlet-Only CWM Additional-Restricted-Hit CWM
pos_patterns.pattern_0 0.834 0.999 124123 107322 13313 11109 2027 96213
pos_patterns.pattern_1 0.941 1.001 42696 39469 9469 8912 543 30557
pos_patterns.pattern_2 0.854 0.999 64693 56185 6315 5394 867 50791
pos_patterns.pattern_3 0.803 0.965 42406 35685 3397 2728 630 32957
pos_patterns.pattern_4 0.823 0.996 27447 24221 2864 2358 476 21863
pos_patterns.pattern_5 0.792 1.000 40993 31472 2119 1678 390 29794
pos_patterns.pattern_6 0.869 0.998 17513 14764 2032 1765 253 12999
pos_patterns.pattern_7 0.914 1.000 21379 18294 2003 1831 162 16463
pos_patterns.pattern_8 0.868 0.994 19398 15838 1618 1404 195 14434
pos_patterns.pattern_9 0.872 0.901 43748 38554 1558 1358 190 37196
pos_patterns.pattern_10 0.951 1.000 12275 10791 1530 1455 66 9336
pos_patterns.pattern_11 0.786 0.956 37260 30486 1506 1184 297 29302
pos_patterns.pattern_12 0.836 0.935 48679 36408 1471 1230 191 35178
pos_patterns.pattern_13 0.722 0.998 11608 9091 1074 775 276 8316
pos_patterns.pattern_14 0.535 0.996 17620 14929 837 448 375 14481
pos_patterns.pattern_15 0.887 0.996 7504 6265 822 729 86 5536
pos_patterns.pattern_16 0.829 1.000 5372 4483 805 667 123 3816
pos_patterns.pattern_17 0.890 0.997 9148 7639 803 715 75 6924
pos_patterns.pattern_18 0.905 0.988 8878 7597 695 629 63 6968
pos_patterns.pattern_19 0.767 0.991 8103 6804 686 526 143 6278
pos_patterns.pattern_20 0.315 0.983 17097 9490 492 155 317 9335
pos_patterns.pattern_21 0.951 0.980 9186 8312 470 447 20 7865
pos_patterns.pattern_22 0.908 0.936 7408 6128 445 404 37 5724
pos_patterns.pattern_23 0.167 0.969 6222 3282 402 67 322 3215
pos_patterns.pattern_24 0.346 1.017 163770 120114 384 133 241 119981
pos_patterns.pattern_25 0.942 0.984 7157 6307 311 293 16 6014
pos_patterns.pattern_26 0.303 0.960 126664 94085 310 94 206 93991
pos_patterns.pattern_27 0.956 0.999 2064 1881 297 284 11 1597
pos_patterns.pattern_28 0.716 0.873 21509 17674 278 199 71 17475
pos_patterns.pattern_29 0.867 0.992 3187 2649 241 209 32 2440
pos_patterns.pattern_30 0.969 1.000 972 942 226 219 6 723
pos_patterns.pattern_31 0.957 0.999 2311 1859 161 154 5 1705
pos_patterns.pattern_32 0.918 0.948 2675 2165 98 90 8 2075
pos_patterns.pattern_33 0.843 0.990 4296 2534 89 75 11 2459
pos_patterns.pattern_34 0.855 0.938 2320 1853 62 53 8 1800
pos_patterns.pattern_35 0.903 0.978 2656 2053 62 56 4 1997
pos_patterns.pattern_36 0.981 0.974 1681 1346 52 51 1 1295
pos_patterns.pattern_37 0.885 0.949 4180 3190 52 46 6 3144
pos_patterns.pattern_38 0.474 0.826 28668 22408 38 18 20 22390
pos_patterns.pattern_39 0.618 0.913 5249 4240 34 21 13 4219
pos_patterns.pattern_40 0.957 0.950 2419 1958 23 22 1 1936
pos_patterns.pattern_41 1.000 0.924 2071 1605 21 21 0 1584
neg_patterns.pattern_0 0.904 0.995 55202 17259 1563 1413 126 15846
neg_patterns.pattern_1 0.914 0.998 25838 5738 267 244 22 5494
neg_patterns.pattern_2 0.894 1.004 8966 2413 208 186 20 2227
neg_patterns.pattern_3 0.944 0.976 26389 4761 126 119 5 4642
neg_patterns.pattern_4 0.909 0.912 9624 2878 121 110 11 2768
neg_patterns.pattern_5 0.940 0.997 6888 1497 100 94 6 1403
neg_patterns.pattern_6 0.306 0.900 130536 104032 98 30 68 104002
neg_patterns.pattern_7 0.500 1.009 47930 37631 92 46 44 37585
neg_patterns.pattern_8 0.519 0.966 95275 75261 81 42 38 75219
neg_patterns.pattern_9 0.545 0.977 126314 100280 66 36 28 100244
neg_patterns.pattern_10 0.774 0.965 841 291 62 48 14 243
neg_patterns.pattern_11 0.705 0.985 3221 893 61 43 18 850
neg_patterns.pattern_12 0.821 0.986 15051 5758 39 32 6 5726
neg_patterns.pattern_13 0.143 0.816 13149 10430 35 5 30 10425
neg_patterns.pattern_14 0.970 0.921 11397 3163 33 32 1 3131
neg_patterns.pattern_15 0.286 0.856 8468 7027 28 8 20 7019
neg_patterns.pattern_16 0.783 0.973 1044 300 23 18 4 282
neg_patterns.pattern_17 0.619 0.883 2276 631 21 13 8 618

Hit distributions

The following figures visualize the distribution of hits across motifs and peaks.

Overall distribution of hits per peak

This plot shows the distribution of hit counts per peak for any motif. The number of peaks with no hits should be near zero.

Per-motif distributions of hits per peak

These plots show the distribution of hit counts per peak for each motif.

Motif Name Hits Per Peak
pos_patterns.pattern_0
pos_patterns.pattern_1
pos_patterns.pattern_2
pos_patterns.pattern_3
pos_patterns.pattern_4
pos_patterns.pattern_5
pos_patterns.pattern_6
pos_patterns.pattern_7
pos_patterns.pattern_8
pos_patterns.pattern_9
pos_patterns.pattern_10
pos_patterns.pattern_11
pos_patterns.pattern_12
pos_patterns.pattern_13
pos_patterns.pattern_14
pos_patterns.pattern_15
pos_patterns.pattern_16
pos_patterns.pattern_17
pos_patterns.pattern_18
pos_patterns.pattern_19
pos_patterns.pattern_20
pos_patterns.pattern_21
pos_patterns.pattern_22
pos_patterns.pattern_23
pos_patterns.pattern_24
pos_patterns.pattern_25
pos_patterns.pattern_26
pos_patterns.pattern_27
pos_patterns.pattern_28
pos_patterns.pattern_29
pos_patterns.pattern_30
pos_patterns.pattern_31
pos_patterns.pattern_32
pos_patterns.pattern_33
pos_patterns.pattern_34
pos_patterns.pattern_35
pos_patterns.pattern_36
pos_patterns.pattern_37
pos_patterns.pattern_38
pos_patterns.pattern_39
pos_patterns.pattern_40
pos_patterns.pattern_41
neg_patterns.pattern_0
neg_patterns.pattern_1
neg_patterns.pattern_2
neg_patterns.pattern_3
neg_patterns.pattern_4
neg_patterns.pattern_5
neg_patterns.pattern_6
neg_patterns.pattern_7
neg_patterns.pattern_8
neg_patterns.pattern_9
neg_patterns.pattern_10
neg_patterns.pattern_11
neg_patterns.pattern_12
neg_patterns.pattern_13
neg_patterns.pattern_14
neg_patterns.pattern_15
neg_patterns.pattern_16
neg_patterns.pattern_17

Motif co-occurrence

This heatmap shows the co-occurrence of motifs across peaks. The color intensity here represents the pearson correlation between the motifs' occurrence across peaks, where occurence is defined as the presence of a hit for a motif in a peak.