Numbers for each pattern pre-subsample: [112, 111, 97, 55, 36, 12, 10, 8, 8, 7, 2]
Numbers after subsampling: [112, 111, 97, 55, 36, 12, 10, 8, 8, 7, 2]
Computing sims for pattern 0
Computed sims for pattern 0 in 2.7441911697387695 s
Computing sims for pattern 1
Computed sims for pattern 1 in 2.6525611877441406 s
Computing sims for pattern 2
Computed sims for pattern 2 in 2.084895133972168 s
Computing sims for pattern 3
Computed sims for pattern 3 in 1.6866869926452637 s
Computing sims for pattern 4
Computed sims for pattern 4 in 1.36021089553833 s
Computing sims for pattern 5
Computed sims for pattern 5 in 0.7050774097442627 s
Computing sims for pattern 6
Computed sims for pattern 6 in 0.6231496334075928 s
Computing sims for pattern 7
Computed sims for pattern 7 in 0.551872968673706 s
Computing sims for pattern 8
Computed sims for pattern 8 in 0.533191442489624 s
Computing sims for pattern 9
Computed sims for pattern 9 in 0.4920511245727539 s
Computing sims for pattern 10
Computed sims for pattern 10 in 0.2679424285888672 s
Cluster sizes
[112 111 97 55 36 12 10 8 8 7 2]
Cross-contamination matrix:
[[1. 0.72 0.7 0.39 0.4 0.25 0.35 0.57 0.34 0.28 0.43]
[0.45 1. 0.39 0.18 0.41 0.13 0.19 0.41 0.28 0.06 0.22]
[0.87 0.83 1. 0.33 0.68 0.37 0.42 0.68 0.46 0.26 0.48]
[0.46 0.52 0.28 1. 0.24 0.14 0.28 0.34 0.32 0.16 0.13]
[0.38 0.67 0.51 0.18 1. 0.21 0.3 0.48 0.34 0.11 0.31]
[0.68 0.83 0.76 0.52 0.72 1. 0.57 0.69 0.62 0.58 0.56]
[0.54 0.76 0.5 0.34 0.48 0.19 1. 0.58 0.43 0.09 0.36]
[0.39 0.55 0.35 0.13 0.33 0.11 0.21 1. 0.23 0.07 0.14]
[0.18 0.4 0.19 0.13 0.2 0.05 0.12 0.23 1. 0.02 0.04]
[0.54 0.52 0.4 0.35 0.32 0.37 0.26 0.39 0.29 1. 0.29]
[0.09 0.11 0.08 0. 0. 0. 0. 0. 0. 0. 1. ]]
Pattern-to-pattern sim matrix:
[[1. 0.89 0.89 0.84 0.76 0.69 0.79 0.82 0.75 0.69 0.64]
[0.89 1. 0.9 0.83 0.89 0.79 0.88 0.91 0.84 0.67 0.69]
[0.89 0.9 1. 0.73 0.87 0.8 0.81 0.84 0.79 0.58 0.65]
[0.84 0.83 0.73 1. 0.67 0.62 0.72 0.74 0.71 0.58 0.53]
[0.76 0.89 0.87 0.67 1. 0.74 0.8 0.82 0.76 0.54 0.65]
[0.69 0.79 0.8 0.62 0.74 1. 0.68 0.72 0.7 0.62 0.57]
[0.79 0.88 0.81 0.72 0.8 0.68 1. 0.8 0.74 0.55 0.66]
[0.82 0.91 0.84 0.74 0.82 0.72 0.8 1. 0.76 0.6 0.63]
[0.75 0.84 0.79 0.71 0.76 0.7 0.74 0.76 1. 0.56 0.51]
[0.69 0.67 0.58 0.58 0.54 0.62 0.55 0.6 0.56 1. 0.51]
[0.64 0.69 0.65 0.53 0.65 0.57 0.66 0.63 0.51 0.51 1. ]]
Collapsing 1 & 7 with crosscontam 0.4148030426335758 and sim 0.9103764003893328
Collapsing 1 & 2 with crosscontam 0.39226355194817364 and sim 0.9013274050458031
Collapsing 0 & 2 with crosscontam 0.6991201574287671 and sim 0.8891089932917386
Collapsing 2 & 4 with crosscontam 0.5076320832095937 and sim 0.8654285726070339
Trimming eliminated 0 seqlets out of 119
Trimming eliminated 0 seqlets out of 216
Trimming eliminated 0 seqlets out of 328
Skipped 33 seqlets that went over the sequence edge during flank expansion
Trimming eliminated 0 seqlets out of 331
Unmerged patterns remapping: OrderedDict([(3, 1), (5, 2), (6, 3), (8, 4), (9, 5), (10, 6)])
Time spent on merging iteration: 1.9417147636413574
On merging iteration 2
Numbers for each pattern pre-subsample: [331, 55, 12, 10, 8, 7, 2]
Numbers after subsampling: [300, 55, 12, 10, 8, 7, 2]
Computing sims for pattern 0
Computed sims for pattern 0 in 3.8693764209747314 s
Computing sims for pattern 1
Computed sims for pattern 1 in 0.24571537971496582 s
Computing sims for pattern 2
Computed sims for pattern 2 in 0.1117398738861084 s
Computing sims for pattern 3
Computed sims for pattern 3 in 0.10693573951721191 s
Computing sims for pattern 4
Computed sims for pattern 4 in 0.10177755355834961 s
Computing sims for pattern 5
Computed sims for pattern 5 in 0.08361387252807617 s
Computing sims for pattern 6
Computed sims for pattern 6 in 0.06667828559875488 s
Cluster sizes
[331 55 12 10 8 7 2]
Cross-contamination matrix:
[[1. 0.51 0.43 0.62 0.62 0.33 0.59]
[0.4 1. 0.14 0.28 0.32 0.16 0.13]
[0.76 0.52 1. 0.57 0.62 0.58 0.56]
[0.6 0.34 0.19 1. 0.43 0.09 0.36]
[0.26 0.13 0.05 0.12 1. 0.02 0.04]
[0.47 0.35 0.37 0.26 0.29 1. 0.29]
[0.08 0. 0. 0. 0. 0. 1. ]]
Pattern-to-pattern sim matrix:
[[1. 0.82 0.8 0.87 0.83 0.66 0.69]
[0.82 1. 0.62 0.72 0.71 0.58 0.53]
[0.8 0.62 1. 0.68 0.7 0.62 0.57]
[0.87 0.72 0.68 1. 0.74 0.55 0.66]
[0.83 0.71 0.7 0.74 1. 0.56 0.51]
[0.66 0.58 0.62 0.55 0.56 1. 0.51]
[0.69 0.53 0.57 0.66 0.51 0.51 1. ]]
Collapsing 0 & 3 with crosscontam 0.6003200000000002 and sim 0.8690583254949964
Trimming eliminated 0 seqlets out of 341
Unmerged patterns remapping: OrderedDict([(1, 1), (2, 2), (4, 3), (5, 4), (6, 5)])
Time spent on merging iteration: 0.3192868232727051
On merging iteration 3
Numbers for each pattern pre-subsample: [341, 55, 12, 8, 7, 2]
Numbers after subsampling: [300, 55, 12, 8, 7, 2]
Computing sims for pattern 0
Computed sims for pattern 0 in 3.148636817932129 s
Computing sims for pattern 1
Computed sims for pattern 1 in 0.24092864990234375 s
Computing sims for pattern 2
Computed sims for pattern 2 in 0.11616969108581543 s
Computing sims for pattern 3
Computed sims for pattern 3 in 0.10202264785766602 s
Computing sims for pattern 4
Computed sims for pattern 4 in 0.09877777099609375 s
Computing sims for pattern 5
Computed sims for pattern 5 in 0.07165169715881348 s
Cluster sizes
[341 55 12 8 7 2]
Cross-contamination matrix:
[[1. 0.52 0.44 0.64 0.34 0.6 ]
[0.4 1. 0.14 0.32 0.16 0.13]
[0.75 0.52 1. 0.62 0.58 0.56]
[0.25 0.13 0.05 1. 0.02 0.04]
[0.46 0.35 0.37 0.29 1. 0.29]
[0.08 0. 0. 0. 0. 1. ]]
Pattern-to-pattern sim matrix:
[[1. 0.82 0.8 0.83 0.66 0.69]
[0.82 1. 0.62 0.71 0.58 0.53]
[0.8 0.62 1. 0.7 0.62 0.57]
[0.83 0.71 0.7 1. 0.56 0.51]
[0.66 0.58 0.62 0.56 1. 0.51]
[0.69 0.53 0.57 0.51 0.51 1. ]]
Merging on 22 clusters
MEMORY 14.247133184
On merging iteration 1
Numbers for each pattern pre-subsample: [1102, 89, 5, 2, 882, 151, 142, 114, 98, 43, 28, 14, 2, 357, 17, 10, 341, 55, 12, 8, 7, 2]
Numbers after subsampling: [300, 89, 5, 2, 300, 151, 142, 114, 98, 43, 28, 14, 2, 300, 17, 10, 300, 55, 12, 8, 7, 2]
Computing sims for pattern 0
Computed sims for pattern 0 in 14.187085628509521 s
Computing sims for pattern 1
Computed sims for pattern 1 in 4.300368547439575 s
Computing sims for pattern 2
Computed sims for pattern 2 in 0.9889605045318604 s
Computing sims for pattern 3
Computed sims for pattern 3 in 0.779677152633667 s
Computing sims for pattern 4
Computed sims for pattern 4 in 14.201063394546509 s
Computing sims for pattern 5
Computed sims for pattern 5 in 7.423771858215332 s
Computing sims for pattern 6
Computed sims for pattern 6 in 6.514514207839966 s
Computing sims for pattern 7
Computed sims for pattern 7 in 6.02603006362915 s
Computing sims for pattern 8
Computed sims for pattern 8 in 4.6973371505737305 s
Computing sims for pattern 9
Computed sims for pattern 9 in 3.1583895683288574 s
Computing sims for pattern 10
Computed sims for pattern 10 in 2.4132659435272217 s
Computing sims for pattern 11
Computed sims for pattern 11 in 1.8065330982208252 s
Computing sims for pattern 12
Computed sims for pattern 12 in 0.7158913612365723 s
Computing sims for pattern 13
Computed sims for pattern 13 in 14.120256185531616 s
Computing sims for pattern 14
Computed sims for pattern 14 in 1.7865524291992188 s
Computing sims for pattern 15
Computed sims for pattern 15 in 1.4853260517120361 s
Computing sims for pattern 16
Computed sims for pattern 16 in 13.684163093566895 s
Computing sims for pattern 17
Computed sims for pattern 17 in 4.000203847885132 s
Computing sims for pattern 18
Computed sims for pattern 18 in 1.6517527103424072 s
Computing sims for pattern 19
Computed sims for pattern 19 in 1.2630078792572021 s
Computing sims for pattern 20
Computed sims for pattern 20 in 1.1634864807128906 s
Computing sims for pattern 21
Computed sims for pattern 21 in 0.7910940647125244 s
Cluster sizes
[1102 89 5 2 882 151 142 114 98 43 28 14 2 357
17 10 341 55 12 8 7 2]
Cross-contamination matrix:
[[1. 0.66 0.61 0.47 0.78 0.04 0.3 0.3 0.03 0. 0. 0. 0. 0.62
0.63 0.43 0.73 0.53 0.34 0.6 0.13 0.44]
[0.3 1. 0.17 0.19 0.2 0.02 0.07 0.09 0.01 0. 0. 0. 0. 0.18
0.15 0.12 0.27 0.14 0.07 0.24 0.04 0.09]
[0.03 0.01 1. 0. 0.02 0. 0. 0.02 0. 0. 0. 0. 0. 0.01
0.03 0. 0.04 0.01 0.02 0.04 0.22 0. ]
[0. 0. 0. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. ]
[0.81 0.5 0.44 0.5 1. 0.06 0.33 0.34 0.05 0. 0. 0. 0. 0.6
0.7 0.36 0.62 0.41 0.24 0.46 0.13 0.28]
[0.18 0.19 0.03 0.23 0.2 1. 0.71 0.78 0.44 0.06 0.24 0.32 0.06 0.27
0.57 0.13 0.05 0.2 0.13 0.05 0.05 0.02]
[0.63 0.52 0.57 0.61 0.65 0.82 1. 0.85 0.43 0.03 0.12 0.19 0.02 0.64
0.94 0.48 0.53 0.56 0.3 0.45 0.37 0.36]
[0.4 0.33 0.36 0.24 0.42 0.6 0.56 1. 0.2 0.03 0.17 0.18 0.01 0.48
0.93 0.31 0.3 0.32 0.18 0.22 0.1 0.29]
[0.44 0.37 0.33 0.37 0.47 0.78 0.68 0.58 1. 0.16 0.29 0.43 0.14 0.38
0.48 0.32 0.37 0.35 0.32 0.3 0.23 0.35]
[0.16 0.26 0.2 0.32 0.18 0.26 0.14 0.27 0.2 1. 0.24 0.2 1. 0.07
0.17 0.06 0.2 0.15 0.13 0.55 0.22 0.42]
[0.27 0.27 0.82 0.5 0.34 0.8 0.5 0.79 0.45 0.3 1. 0.58 0.17 0.41
0.39 0.23 0.22 0.24 0.73 0.27 0.72 0.17]
[0.06 0.03 0.08 0.02 0.05 0.66 0.32 0.52 0.38 0.06 0.24 1. 0.03 0.04
0.05 0.03 0.05 0.09 0.07 0.04 0.05 0.02]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0.27 0. 0. 1. 0.
0. 0. 0. 0. 0. 0. 0. 0. ]
[0.57 0.4 0.34 0.33 0.54 0.13 0.32 0.4 0.06 0. 0.03 0.01 0. 1.
0.75 0.6 0.43 0.33 0.19 0.38 0.14 0.26]
[0.29 0.11 0.16 0.05 0.33 0.09 0.3 0.61 0. 0. 0. 0. 0. 0.46
1. 0.24 0.16 0.09 0.03 0.09 0.01 0.06]
[0.27 0.21 0.2 0.23 0.26 0.01 0.08 0.16 0. 0. 0. 0. 0. 0.51
0.4 1. 0.19 0.15 0.11 0.25 0.05 0.19]
[0.69 0.54 0.55 0.6 0.56 0.01 0.22 0.2 0.05 0.01 0.01 0.01 0.02 0.44
0.41 0.35 1. 0.52 0.44 0.64 0.34 0.6 ]
[0.36 0.26 0.27 0.18 0.27 0.03 0.14 0.13 0.01 0. 0. 0. 0. 0.21
0.22 0.23 0.4 1. 0.14 0.32 0.16 0.13]
[0.66 0.53 0.68 0.56 0.58 0.18 0.32 0.34 0.14 0.02 0.3 0.04 0.01 0.48
0.51 0.4 0.75 0.52 1. 0.62 0.58 0.56]
[0.23 0.16 0.24 0.13 0.13 0. 0.02 0.01 0. 0. 0. 0. 0. 0.11
0.08 0.06 0.25 0.13 0.05 1. 0.02 0.04]
[0.38 0.23 1. 0.39 0.35 0. 0.15 0.04 0.01 0. 0.19 0. 0. 0.26
0.3 0.28 0.46 0.35 0.37 0.29 1. 0.29]
[0. 0. 0. 0. 0.01 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.08 0. 0. 0. 0. 1. ]]
Pattern-to-pattern sim matrix:
[[1. 0.86 0.8 0.76 0.92 0.37 0.75 0.68 0.49 0.21 0.33 0.35 0.21 0.87
0.83 0.85 0.92 0.8 0.76 0.82 0.67 0.7 ]
[0.86 1. 0.7 0.67 0.78 0.35 0.62 0.58 0.39 0.24 0.28 0.27 0.16 0.74
0.69 0.72 0.81 0.69 0.64 0.74 0.56 0.61]
[0.8 0.7 1. 0.63 0.74 0.29 0.61 0.54 0.37 0.29 0.56 0.32 0.24 0.68
0.67 0.68 0.77 0.66 0.67 0.71 0.88 0.62]
[0.76 0.67 0.63 1. 0.75 0.42 0.68 0.52 0.45 0.34 0.42 0.3 0.31 0.66
0.67 0.65 0.73 0.61 0.6 0.68 0.58 0.52]
[0.92 0.78 0.74 0.75 1. 0.41 0.79 0.71 0.54 0.26 0.41 0.36 0.22 0.85
0.86 0.77 0.86 0.75 0.71 0.74 0.67 0.66]
[0.37 0.35 0.29 0.42 0.41 1. 0.82 0.8 0.72 0.26 0.57 0.67 0.24 0.46
0.6 0.34 0.35 0.5 0.3 0.28 0.26 0.24]
[0.75 0.62 0.61 0.68 0.79 0.82 1. 0.75 0.68 0.25 0.46 0.35 0.19 0.71
0.74 0.63 0.67 0.69 0.5 0.59 0.56 0.42]
[0.68 0.58 0.54 0.52 0.71 0.8 0.75 1. 0.52 0.21 0.49 0.53 0.2 0.75
0.9 0.59 0.61 0.61 0.49 0.47 0.34 0.52]
[0.49 0.39 0.37 0.45 0.54 0.72 0.68 0.52 1. 0.2 0.36 0.44 0.18 0.43
0.5 0.37 0.41 0.42 0.37 0.31 0.25 0.37]
[0.21 0.24 0.29 0.34 0.26 0.26 0.25 0.21 0.2 1. 0.39 0.29 0.89 0.16
0.21 0.18 0.19 0.17 0.3 0.33 0.34 0.26]
[0.33 0.28 0.56 0.42 0.41 0.57 0.46 0.49 0.36 0.39 1. 0.38 0.29 0.34
0.35 0.28 0.28 0.3 0.56 0.3 0.62 0.28]
[0.35 0.27 0.32 0.3 0.36 0.67 0.35 0.53 0.44 0.29 0.38 1. 0.33 0.29
0.31 0.28 0.3 0.3 0.39 0.28 0.26 0.19]
[0.21 0.16 0.24 0.31 0.22 0.24 0.19 0.2 0.18 0.89 0.29 0.33 1. 0.16
0.19 0.18 0.19 0.12 0.31 0.26 0.25 0.16]
[0.87 0.74 0.68 0.66 0.85 0.46 0.71 0.75 0.43 0.16 0.34 0.29 0.16 1.
0.89 0.85 0.81 0.69 0.65 0.73 0.59 0.61]
[0.83 0.69 0.67 0.67 0.86 0.6 0.74 0.9 0.5 0.21 0.35 0.31 0.19 0.89
1. 0.76 0.76 0.67 0.62 0.65 0.58 0.59]
[0.85 0.72 0.68 0.65 0.77 0.34 0.63 0.59 0.37 0.18 0.28 0.28 0.18 0.85
0.76 1. 0.8 0.69 0.65 0.7 0.58 0.63]
[0.92 0.81 0.77 0.73 0.86 0.35 0.67 0.61 0.41 0.19 0.28 0.3 0.19 0.81
0.76 0.8 1. 0.82 0.8 0.83 0.66 0.69]
[0.8 0.69 0.66 0.61 0.75 0.5 0.69 0.61 0.42 0.17 0.3 0.3 0.12 0.69
0.67 0.69 0.82 1. 0.62 0.71 0.58 0.53]
[0.76 0.64 0.67 0.6 0.71 0.3 0.5 0.49 0.37 0.3 0.56 0.39 0.31 0.65
0.62 0.65 0.8 0.62 1. 0.7 0.62 0.57]
[0.82 0.74 0.71 0.68 0.74 0.28 0.59 0.47 0.31 0.33 0.3 0.28 0.26 0.73
0.65 0.7 0.83 0.71 0.7 1. 0.56 0.51]
[0.67 0.56 0.88 0.58 0.67 0.26 0.56 0.34 0.25 0.34 0.62 0.26 0.25 0.59
0.58 0.58 0.66 0.58 0.62 0.56 1. 0.51]
[0.7 0.61 0.62 0.52 0.66 0.24 0.42 0.52 0.37 0.26 0.28 0.19 0.16 0.61
0.59 0.63 0.69 0.53 0.57 0.51 0.51 1. ]]
Collapsing 0 & 16 with crosscontam 0.6854722049382715 and sim 0.9233883441095919
Collapsing 0 & 4 with crosscontam 0.7821088138271606 and sim 0.9150010033144051
Collapsing 7 & 14 with crosscontam 0.6115890173224634 and sim 0.9028928001880183
Collapsing 0 & 13 with crosscontam 0.5656703708641977 and sim 0.8698389947881155
Collapsing 4 & 16 with crosscontam 0.5602700637037039 and sim 0.8555642993111345
Skipped 5 seqlets that went over the sequence edge during flank expansion
Trimming eliminated 0 seqlets out of 1438
Skipped 81 seqlets that went over the sequence edge during flank expansion
Skipped 4 seqlets that went over the sequence edge during flank expansion
Trimming eliminated 0 seqlets out of 2235
Skipped 81 seqlets that went over the sequence edge during flank expansion
Trimming eliminated 0 seqlets out of 131
Skipped 3 seqlets that went over the sequence edge during flank expansion
Skipped 2 seqlets that went over sequence edge during flank expansion
Skipped 1 due to duplicates
Trimming eliminated 0 seqlets out of 2505
Skipped 146 seqlets that went over the sequence edge during flank expansion
Unmerged patterns remapping: OrderedDict([(1, 5), (2, 14), (3, 15), (5, 1), (6, 2), (8, 4), (9, 7), (10, 8), (11, 9), (12, 16), (15, 11), (17, 6), (18, 10), (19, 12), (20, 13), (21, 17)])
Time spent on merging iteration: 11.327602863311768
On merging iteration 2
Numbers for each pattern pre-subsample: [2359, 151, 142, 131, 98, 89, 55, 43, 28, 14, 12, 10, 8, 7, 5, 2, 2, 2]
Numbers after subsampling: [300, 151, 142, 131, 98, 89, 55, 43, 28, 14, 12, 10, 8, 7, 5, 2, 2, 2]
Computing sims for pattern 0
Computed sims for pattern 0 in 11.164413452148438 s
Computing sims for pattern 1
Computed sims for pattern 1 in 0.8772587776184082 s
Computing sims for pattern 2
Computed sims for pattern 2 in 0.7360920906066895 s
Computing sims for pattern 3
Computed sims for pattern 3 in 4.403687953948975 s
Computing sims for pattern 4
Computed sims for pattern 4 in 0.5462625026702881 s
Computing sims for pattern 5
Computed sims for pattern 5 in 0.7667226791381836 s
Computing sims for pattern 6
Computed sims for pattern 6 in 0.4166250228881836 s
Computing sims for pattern 7
Computed sims for pattern 7 in 0.3210892677307129 s
Computing sims for pattern 8
Computed sims for pattern 8 in 0.28917598724365234 s
Computing sims for pattern 9
Computed sims for pattern 9 in 0.2213582992553711 s
Computing sims for pattern 10
Computed sims for pattern 10 in 0.20161747932434082 s
Computing sims for pattern 11
Computed sims for pattern 11 in 0.19224858283996582 s
Computing sims for pattern 12
Computed sims for pattern 12 in 0.17246055603027344 s
Computing sims for pattern 13
Computed sims for pattern 13 in 0.15851283073425293 s
Computing sims for pattern 14
Computed sims for pattern 14 in 0.13884472846984863 s
Computing sims for pattern 15
Computed sims for pattern 15 in 0.10401153564453125 s
Computing sims for pattern 16
Computed sims for pattern 16 in 0.10087108612060547 s
Computing sims for pattern 17
Computed sims for pattern 17 in 0.09780025482177734 s
Cluster sizes
[2359 151 142 131 98 89 55 43 28 14 12 10 8 7
5 2 2 2]
Cross-contamination matrix:
[[1. 0.07 0.36 0.46 0.04 0.67 0.56 0. 0.01 0. 0.34 0.54 0.62 0.18
0.61 0.72 0. 0.36]
[0.2 1. 0.71 0.76 0.44 0.19 0.2 0.06 0.24 0.32 0.13 0.13 0.05 0.05
0.03 0.23 0.06 0.02]
[0.64 0.82 1. 0.86 0.43 0.52 0.56 0.03 0.12 0.19 0.3 0.48 0.45 0.37
0.57 0.61 0.02 0.36]
[0.46 0.58 0.58 1. 0.19 0.34 0.32 0.02 0.16 0.16 0.19 0.34 0.27 0.14
0.36 0.29 0.01 0.27]
[0.43 0.78 0.68 0.57 1. 0.37 0.35 0.16 0.29 0.43 0.32 0.32 0.3 0.23
0.33 0.37 0.14 0.35]
[0.25 0.02 0.07 0.09 0.01 1. 0.14 0. 0. 0. 0.07 0.12 0.24 0.04
0.17 0.19 0. 0.09]
[0.33 0.03 0.14 0.15 0.01 0.26 1. 0. 0. 0. 0.14 0.23 0.32 0.16
0.27 0.18 0. 0.13]
[0.17 0.26 0.14 0.26 0.2 0.26 0.15 1. 0.24 0.2 0.13 0.06 0.55 0.22
0.2 0.32 1. 0.42]
[0.33 0.8 0.5 0.78 0.45 0.27 0.24 0.3 1. 0.58 0.73 0.23 0.27 0.72
0.82 0.5 0.17 0.17]
[0.05 0.66 0.32 0.49 0.38 0.03 0.09 0.06 0.24 1. 0.07 0.03 0.04 0.05
0.08 0.02 0.03 0.02]
[0.62 0.18 0.32 0.36 0.14 0.53 0.52 0.02 0.3 0.04 1. 0.4 0.62 0.58
0.68 0.56 0.01 0.56]
[0.34 0.01 0.08 0.19 0. 0.21 0.15 0. 0. 0. 0.11 1. 0.25 0.05
0.2 0.23 0. 0.19]
[0.18 0. 0.02 0.03 0. 0.16 0.13 0. 0. 0. 0.05 0.06 1. 0.02
0.24 0.13 0. 0.04]
[0.37 0. 0.15 0.16 0.01 0.23 0.35 0. 0.19 0. 0.37 0.28 0.29 1.
1. 0.39 0. 0.29]
[0.03 0. 0. 0.02 0. 0.01 0.01 0. 0. 0. 0.02 0. 0.04 0.22
1. 0. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 1. 0. 0. ]
[0. 0. 0. 0. 0. 0. 0. 0.27 0. 0. 0. 0. 0. 0.
0. 0. 1. 0. ]
[0.01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. ]]
Pattern-to-pattern sim matrix:
[[1. 0.4 0.79 0.75 0.52 0.84 0.79 0.24 0.37 0.36 0.75 0.83 0.8 0.68
0.79 0.78 0.22 0.7 ]
[0.4 1. 0.82 0.78 0.72 0.35 0.5 0.26 0.57 0.67 0.3 0.34 0.28 0.26
0.29 0.42 0.24 0.24]
[0.79 0.82 1. 0.75 0.68 0.62 0.69 0.25 0.46 0.35 0.5 0.63 0.59 0.56
0.61 0.68 0.19 0.42]
[0.75 0.78 0.75 1. 0.5 0.6 0.62 0.19 0.47 0.49 0.51 0.63 0.55 0.48
0.56 0.55 0.18 0.53]
[0.52 0.72 0.68 0.5 1. 0.39 0.42 0.2 0.36 0.44 0.37 0.37 0.31 0.25
0.37 0.45 0.18 0.37]
[0.84 0.35 0.62 0.6 0.39 1. 0.69 0.24 0.28 0.27 0.64 0.72 0.74 0.56
0.7 0.67 0.16 0.61]
[0.79 0.5 0.69 0.62 0.42 0.69 1. 0.17 0.3 0.3 0.62 0.69 0.71 0.58
0.66 0.61 0.12 0.53]
[0.24 0.26 0.25 0.19 0.2 0.24 0.17 1. 0.39 0.29 0.3 0.18 0.33 0.34
0.29 0.34 0.89 0.26]
[0.37 0.57 0.46 0.47 0.36 0.28 0.3 0.39 1. 0.38 0.56 0.28 0.3 0.62
0.56 0.42 0.29 0.28]
[0.36 0.67 0.35 0.49 0.44 0.27 0.3 0.29 0.38 1. 0.39 0.28 0.28 0.26
0.32 0.3 0.33 0.19]
[0.75 0.3 0.5 0.51 0.37 0.64 0.62 0.3 0.56 0.39 1. 0.65 0.7 0.62
0.67 0.6 0.31 0.57]
[0.83 0.34 0.63 0.63 0.37 0.72 0.69 0.18 0.28 0.28 0.65 1. 0.7 0.58
0.68 0.65 0.18 0.63]
[0.8 0.28 0.59 0.55 0.31 0.74 0.71 0.33 0.3 0.28 0.7 0.7 1. 0.56
0.71 0.68 0.26 0.51]
[0.68 0.26 0.56 0.48 0.25 0.56 0.58 0.34 0.62 0.26 0.62 0.58 0.56 1.
0.88 0.58 0.25 0.51]
[0.79 0.29 0.61 0.56 0.37 0.7 0.66 0.29 0.56 0.32 0.67 0.68 0.71 0.88
1. 0.63 0.24 0.62]
[0.78 0.42 0.68 0.55 0.45 0.67 0.61 0.34 0.42 0.3 0.6 0.65 0.68 0.58
0.63 1. 0.31 0.52]
[0.22 0.24 0.19 0.18 0.18 0.16 0.12 0.89 0.29 0.33 0.31 0.18 0.26 0.25
0.24 0.31 1. 0.16]
[0.7 0.24 0.42 0.53 0.37 0.61 0.53 0.26 0.28 0.19 0.57 0.63 0.51 0.51
0.62 0.52 0.16 1. ]]
Got 18 patterns after merging
MEMORY 14.247153664
Performing filtering
MEMORY 14.247153664
Got 8 patterns after filtering
MEMORY 14.247153664
Total time taken is 3410.3s
MEMORY 14.247153664
Applying subclustering to the final motifs
On pattern 0