from importlib import reload
from collections import Counter
from modisco.visualization import viz_sequence
reload(viz_sequence)
from matplotlib import pyplot as plt
import h5py
import numpy as np
import modisco.affinitymat.core
reload(modisco.affinitymat.core)
import modisco.cluster.phenograph.core
reload(modisco.cluster.phenograph.core)
import modisco.cluster.phenograph.cluster
reload(modisco.cluster.phenograph.cluster)
import modisco.cluster.core
reload(modisco.cluster.core)
import modisco.aggregator
reload(modisco.aggregator)
%cd ..
hdf5_results = h5py.File("results_modisco/results8/results_task8.hdf5","r")
print("Metaclusters heatmap")
import seaborn as sns
activity_patterns = np.array(hdf5_results['metaclustering_results']['attribute_vectors'])[
np.array(
[x[0] for x in sorted(
enumerate(hdf5_results['metaclustering_results']['metacluster_indices']),
key=lambda x: x[1])])]
sns.heatmap(activity_patterns, center=0)
plt.show()
metacluster_names = [
x.decode("utf-8") for x in
list(hdf5_results["metaclustering_results"]
["all_metacluster_names"][:])]
all_patterns = []
for metacluster_name in metacluster_names:
print(metacluster_name)
metacluster_grp = (hdf5_results["metacluster_idx_to_submetacluster_results"]
[metacluster_name])
print("activity pattern:",metacluster_grp["activity_pattern"][:])
all_pattern_names = [x.decode("utf-8") for x in
list(metacluster_grp["seqlets_to_patterns_result"]
["patterns"]["all_pattern_names"][:])]
if (len(all_pattern_names)==0):
print("No motifs found for this activity pattern")
for pattern_name in all_pattern_names:
print(metacluster_name, pattern_name)
all_patterns.append((metacluster_name, pattern_name))
pattern = metacluster_grp["seqlets_to_patterns_result"]["patterns"][pattern_name]
print("total seqlets:",len(pattern["seqlets_and_alnmts"]["seqlets"]))
background = np.array([0.27, 0.23, 0.23, 0.27])
print("Task 8 hypothetical scores:")
viz_sequence.plot_weights(pattern["task8_hypothetical_contribs"]["fwd"])
print("Task 8 actual importance scores:")
viz_sequence.plot_weights(pattern["task8_contrib_scores"]["fwd"])
print("onehot, fwd and rev:")
viz_sequence.plot_weights(viz_sequence.ic_scale(np.array(pattern["sequence"]["fwd"]),
background=background))
viz_sequence.plot_weights(viz_sequence.ic_scale(np.array(pattern["sequence"]["rev"]),
background=background))
hdf5_results.close()