In [1]:
import os
import sys
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from motif.read_motifs import pfm_info_content, pfm_to_pwm
from util import figure_to_vdom_image
import plot.viz_sequence as viz_sequence
import h5py
import numpy as np
import pyfaidx
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
import tqdm
tqdm.tqdm_notebook()
/users/amtseng/miniconda3/envs/tfmodisco-mini/lib/python3.7/site-packages/ipykernel_launcher.py:14: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  
Out[1]:
0it [00:00, ?it/s]

Define constants and paths

In [2]:
# Define parameters/fetch arguments
filter_activations_path = os.environ["TFM_FILTER_ACTIVATIONS"]
filter_weights_path = os.environ["TFM_FILTER_WEIGHTS"]

if "TFM_MOTIF_CACHE" in os.environ:
    activation_motifs_cache_dir = os.environ["TFM_MOTIF_CACHE"]
else:
    activation_motifs_cache_dir = None

print("Path to filter activations: %s" % filter_activations_path)
print("Path to filter weights: %s" % filter_weights_path)
print("Saved activation-derived motifs cache: %s" % activation_motifs_cache_dir)
Path to filter activations: /users/amtseng/tfmodisco/results/filter_activations/singletask_profile_finetune/MAX_singletask_profile_finetune_task4_fold5_filter_activations.h5
Path to filter weights: /users/amtseng/tfmodisco/results/filter_weights/singletask_profile_finetune/MAX_singletask_profile_finetune_task4_fold5_filter_weights.npy
Saved activation-derived motifs cache: /users/amtseng/tfmodisco/results/reports/filter_derived_motifs/cache/MAX_singletask_profile_finetune_task4_fold5_filter
In [3]:
# Constants/paths
input_length = 2114
filter_width = 21
reference_genome_path = "/users/amtseng/genomes/hg38.fasta"
In [4]:
if activation_motifs_cache_dir:
    os.makedirs(activation_motifs_cache_dir, exist_ok=True)

Helper functions

For extracting motifs

In [5]:
def dna_to_one_hot(seqs):
    """
    Converts a list of DNA ("ACGT") sequences to one-hot encodings, where the
    position of 1s is ordered alphabetically by "ACGT". `seqs` must be a list
    of N strings, where every string is the same length L. Returns an N x L x 4
    NumPy array of one-hot encodings, in the same order as the input sequences.
    All bases will be converted to upper-case prior to performing the encoding.
    Any bases that are not "ACGT" will be given an encoding of all 0s.
    """
    seq_len = len(seqs[0])
    assert np.all(np.array([len(s) for s in seqs]) == seq_len)

    # Join all sequences together into one long string, all uppercase
    seq_concat = "".join(seqs).upper()

    one_hot_map = np.identity(5)[:, :-1]

    # Convert string into array of ASCII character codes;
    base_vals = np.frombuffer(bytearray(seq_concat, "utf8"), dtype=np.int8)

    # Anything that's not an A, C, G, or T gets assigned a higher code
    base_vals[~np.isin(base_vals, np.array([65, 67, 71, 84]))] = 85

    # Convert the codes into indices in [0, 4], in ascending order by code
    _, base_inds = np.unique(base_vals, return_inverse=True)

    # Get the one-hot encoding for those indices, and reshape back to separate
    return one_hot_map[base_inds].reshape((len(seqs), seq_len, 4))
In [6]:
def extract_filter_activation_motifs(filter_activations_path, reference_genome_path):
    """
    Extracts the motifs that correspond to each filter. Returns an
    F x W x 4 array, where F is the number of filters and W is the width
    of each filter. The order of filters matches those in the saved HDF5/model.
    """
    reader = h5py.File(filter_activations_path, "r")
    activations_reader = reader["activations"]
    num_coords, two, num_windows, num_filters = activations_reader.shape
    
    assert two == 2
    assert num_windows == input_length - filter_width + 1
    
    print("Importing coordinates...")
    coords = np.empty((num_coords, 3), dtype=object)
    coords[:, 0] = reader["coords"]["coords_chrom"][:].astype(str)
    coords[:, 1] = reader["coords"]["coords_start"][:]
    coords[:, 2] = reader["coords"]["coords_end"][:]
    
    print("Fetching one-hot sequences...")
    genome_reader = pyfaidx.Fasta(reference_genome_path)
    one_hot_seqs = np.empty((num_coords, input_length, 4))
    batch_size = 128
    num_batches = int(np.ceil(num_coords / batch_size))
    for i in tqdm.notebook.trange(num_batches):
        batch_slice = slice(i * batch_size, (i + 1) * batch_size)
        one_hot_seqs[batch_slice] = dna_to_one_hot([
            genome_reader[chrom][start:end].seq for chrom, start, end in coords[batch_slice]
        ])
    
    pfms = np.empty((num_filters, filter_width, 4))
    for filter_index in range(num_filters):
        print("Extracting motif for filter %d..." % filter_index)
    
        print("\tComputing maximum activation...")
        acts = activations_reader[:, :, :, filter_index]
        max_act = np.max(acts)
        
        inds = np.where(acts >= 0.5 * max_act)
        
        windows, num_windows = np.zeros((filter_width, 4)), 0
        for coord_index, strand_index, pos_index in tqdm.notebook.tqdm(
            zip(*inds), total=len(inds[0]), desc="Extracting windows..."
        ):
            if strand_index == 0:
                window = one_hot_seqs[coord_index, pos_index : pos_index + filter_width]
            else:
                # Reverse complement; the positions are flipped
                window = np.flip(
                    one_hot_seqs[coord_index, input_length - filter_width - pos_index : input_length - pos_index],
                    axis=(0, 1)
                )
            windows = windows + window
            num_windows += 1
        
        pfms[filter_index] = windows / num_windows
    
    return pfms
In [7]:
def compute_filter_influence(filter_activations_path):
    """
    Extracts the influence of each filter by computing the difference
    in cross entropy when each filter is nullified.
    Returns an F-array, where F is the number of filters, containing the
    change in average cross entropy (after nullification - before
    nullification). The order of filters matches those in the saved
    HDF5/model.
    """
    reader = h5py.File(filter_activations_path, "r")
    print("Reading in cross entropies...")
    before_null_cross_ents = reader["predictions"]["cross_ents"][:]
    after_null_cross_ents = reader["nullified_predictions"]["cross_ents"][:]
    
    before_null = np.nanmean(before_null_cross_ents)
    
    num_filters = after_null_cross_ents.shape[1]
    
    influences = []
    for filter_index in tqdm.notebook.trange(num_filters):
        after_null = np.nanmean(after_null_cross_ents[:, filter_index])
        influences.append(after_null - before_null)
        
    return np.array(influences)
In [8]:
def save_activation_motifs(filter_pfms, filter_influences, path):
    """
    Saves the filter-activation-derived PFMs and influence values.
    """
    with h5py.File(path, "w") as f:
        f.create_dataset("pfms", data=filter_pfms, compression="gzip")
        f.create_dataset("influences", data=filter_influences, compression="gzip")
In [9]:
def load_activation_motifs(path):
    """
    Loads the filter-activation-derived PFMs and influence values.
    """
    with h5py.File(path, "r") as f:
        return f["pfms"][:], f["influences"][:]

Extract motifs from filter activations

Extract the motifs derived from each filter, ranked by filter influence.

Deriving a filter's motif:

  1. Identify the top 10000 most well-predicted input sequences, ranked by cross entropy
  2. For each window in each of these sequences, compute the filter activation for each 1st-layer filter
  3. A filter's motif is the aggregation of sequence windows which activate that filter to at least half its maximum activation (over the top 10000 most well-predicted inputs)

Deriving a filter's influence:

  1. Identify the top 10000 most well-predicted input sequences, ranked by cross entropy
  2. Nullify each filter by setting it to the average activation over these 10000 most well-predicted inputs
  3. A filter's influence is the average change in cross entropy before and after nullification
In [10]:
compute_motifs = True
if activation_motifs_cache_dir:
    # Import if it exists
    cache_path = os.path.join(activation_motifs_cache_dir, "filter_activation_motifs.h5")
    if os.path.exists(cache_path) and os.stat(cache_path).st_size:
        filter_pfms, filter_influences = load_activation_motifs(cache_path)
        compute_motifs = False

if compute_motifs:
    # Extract PFMs of highly-activating sequences
    filter_pfms = extract_filter_activation_motifs(filter_activations_path, reference_genome_path)

    # Compute influence of each filter
    filter_influences = compute_filter_influence(filter_activations_path)

    if activation_motifs_cache_dir:
        save_activation_motifs(filter_pfms, filter_influences, cache_path)
Importing coordinates...
Fetching one-hot sequences...
Extracting motif for filter 0...
	Computing maximum activation...
Extracting motif for filter 1...
	Computing maximum activation...
Extracting motif for filter 2...
	Computing maximum activation...
Extracting motif for filter 3...
	Computing maximum activation...
Extracting motif for filter 4...
	Computing maximum activation...
Extracting motif for filter 5...
	Computing maximum activation...
Extracting motif for filter 6...
	Computing maximum activation...
Extracting motif for filter 7...
	Computing maximum activation...
Extracting motif for filter 8...
	Computing maximum activation...
Extracting motif for filter 9...
	Computing maximum activation...
Extracting motif for filter 10...
	Computing maximum activation...
Extracting motif for filter 11...
	Computing maximum activation...
Extracting motif for filter 12...
	Computing maximum activation...
Extracting motif for filter 13...
	Computing maximum activation...
Extracting motif for filter 14...
	Computing maximum activation...
Extracting motif for filter 15...
	Computing maximum activation...
Extracting motif for filter 16...
	Computing maximum activation...
Extracting motif for filter 17...
	Computing maximum activation...
Extracting motif for filter 18...
	Computing maximum activation...
Extracting motif for filter 19...
	Computing maximum activation...
Extracting motif for filter 20...
	Computing maximum activation...
Extracting motif for filter 21...
	Computing maximum activation...
Extracting motif for filter 22...
	Computing maximum activation...
Extracting motif for filter 23...
	Computing maximum activation...
Extracting motif for filter 24...
	Computing maximum activation...
Extracting motif for filter 25...
	Computing maximum activation...
Extracting motif for filter 26...
	Computing maximum activation...
Extracting motif for filter 27...
	Computing maximum activation...
Extracting motif for filter 28...
	Computing maximum activation...
Extracting motif for filter 29...
	Computing maximum activation...
Extracting motif for filter 30...
	Computing maximum activation...
Extracting motif for filter 31...
	Computing maximum activation...
Extracting motif for filter 32...
	Computing maximum activation...
Extracting motif for filter 33...
	Computing maximum activation...
Extracting motif for filter 34...
	Computing maximum activation...
Extracting motif for filter 35...
	Computing maximum activation...
Extracting motif for filter 36...
	Computing maximum activation...
Extracting motif for filter 37...
	Computing maximum activation...
Extracting motif for filter 38...
	Computing maximum activation...
Extracting motif for filter 39...
	Computing maximum activation...
Extracting motif for filter 40...
	Computing maximum activation...
Extracting motif for filter 41...
	Computing maximum activation...
Extracting motif for filter 42...
	Computing maximum activation...
Extracting motif for filter 43...
	Computing maximum activation...
Extracting motif for filter 44...
	Computing maximum activation...
Extracting motif for filter 45...
	Computing maximum activation...
Extracting motif for filter 46...
	Computing maximum activation...
Extracting motif for filter 47...
	Computing maximum activation...
Extracting motif for filter 48...
	Computing maximum activation...
Extracting motif for filter 49...
	Computing maximum activation...
Extracting motif for filter 50...
	Computing maximum activation...
Extracting motif for filter 51...
	Computing maximum activation...
Extracting motif for filter 52...
	Computing maximum activation...
Extracting motif for filter 53...
	Computing maximum activation...
Extracting motif for filter 54...
	Computing maximum activation...
Extracting motif for filter 55...
	Computing maximum activation...
Extracting motif for filter 56...
	Computing maximum activation...
Extracting motif for filter 57...
	Computing maximum activation...
Extracting motif for filter 58...
	Computing maximum activation...
Extracting motif for filter 59...
	Computing maximum activation...
Extracting motif for filter 60...
	Computing maximum activation...
Extracting motif for filter 61...
	Computing maximum activation...
Extracting motif for filter 62...
	Computing maximum activation...
Extracting motif for filter 63...
	Computing maximum activation...
Reading in cross entropies...

Extract motifs from filter weights

In [11]:
# Import the filter weights themselves
filter_weights = np.load(filter_weights_path)
assert len(filter_weights.shape) == 3
assert filter_weights.shape[:2] == (filter_width, 4)
filter_weights = np.transpose(filter_weights, axes=(2, 0, 1))  # Shape: F x W x 4

Motifs derived from filter-activating sequences

For each filter, its motif is constructed by averaging all of the sequences that activate it at least to half of its maximal activation. We show the PWMs. The filters are ranked by influence (i.e. the average difference in prediction cross entropy when the filter is nullified--that is, replaced with its average activation).

In [12]:
colgroup = vdomh.colgroup(
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "85%"})
)
header = vdomh.thead(
    vdomh.tr(
        vdomh.th("Rank", style={"text-align": "center"}),
        vdomh.th("Filter index", style={"text-align": "center"}),
        vdomh.th("Influence", style={"text-align": "center"}),
        vdomh.th("PWM", style={"text-align": "center"})
    )
)

body = []
for i, filter_index in enumerate(np.flip(np.argsort(filter_influences))):
    pwm = pfm_to_pwm(filter_pfms[filter_index])
    if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
        # Flip to purine-rich version
        pwm = np.flip(pwm, axis=(0, 1))
    fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
    fig.tight_layout()
    
    body.append(
        vdomh.tr(
            vdomh.td(str(i + 1)),
            vdomh.td(str(filter_index)),
            vdomh.td("%.3f" % filter_influences[filter_index]),
            vdomh.td(figure_to_vdom_image(fig))
        )
    )
    
    if activation_motifs_cache_dir:
        # Save motif PWM
        fig.savefig(os.path.join(activation_motifs_cache_dir, "filter_activation_motif_%d.png" % filter_index))

display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
  fig = plt.figure(figsize=figsize)
RankFilter indexInfluencePWM
1210.063
2290.039
3120.025
4500.018
5260.011
6570.010
7350.010
8330.010
9560.010
1050.009
11130.008
1240.008
13630.008
1400.006
15340.006
16530.006
17220.005
18610.005
19520.005
20150.004
2170.004
2290.004
23400.004
2420.004
25550.004
26310.004
27250.003
28170.003
2910.003
30470.003
31160.003
32510.003
3380.003
34320.003
35240.003
36450.003
37590.003
38620.003
39360.003
40490.003
41270.002
42460.002
43380.002
44190.002
45180.002
4630.002
47600.002
48280.002
49410.002
50230.002
51200.002
52430.002
5360.002
54440.002
55580.002
56140.002
57100.002
58540.002
59300.002
60110.002
61420.001
62390.001
63370.001
64480.001

Motifs derived from filter weights

For each filter, we show its corresponding motif simply as the mean-normalized multiplicative weights in the filter. For consistency, we rank the filters by influence (as above).

In [13]:
colgroup = vdomh.colgroup(
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "85%"})
)
header = vdomh.thead(
    vdomh.tr(
        vdomh.th("Rank", style={"text-align": "center"}),
        vdomh.th("Filter index", style={"text-align": "center"}),
        vdomh.th("Influence", style={"text-align": "center"}),
        vdomh.th("Mean-normalized filter weights", style={"text-align": "center"})
    )
)

body = []
for i, filter_index in enumerate(np.flip(np.argsort(filter_influences))):
    weights = filter_weights[filter_index]
    weights = weights - np.mean(weights, axis=1, keepdims=True)
    if np.sum(weights[:, [0, 2]]) < 0.5 * np.sum(weights):
        # Flip to purine-rich version
        weights = np.flip(weights, axis=(0, 1))
    fig = viz_sequence.plot_weights(weights, figsize=(20, 4), return_fig=True)
    fig.tight_layout()
    
    body.append(
        vdomh.tr(
            vdomh.td(str(i + 1)),
            vdomh.td(str(filter_index)),
            vdomh.td("%.3f" % filter_influences[filter_index]),
            vdomh.td(figure_to_vdom_image(fig))
        )
    )
    
    if activation_motifs_cache_dir:
        # Save motif PWM
        fig.savefig(os.path.join(activation_motifs_cache_dir, "filter_weight_motif_%d.png" % filter_index))

display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
RankFilter indexInfluenceMean-normalized filter weights
1210.063
2290.039
3120.025
4500.018
5260.011
6570.010
7350.010
8330.010
9560.010
1050.009
11130.008
1240.008
13630.008
1400.006
15340.006
16530.006
17220.005
18610.005
19520.005
20150.004
2170.004
2290.004
23400.004
2420.004
25550.004
26310.004
27250.003
28170.003
2910.003
30470.003
31160.003
32510.003
3380.003
34320.003
35240.003
36450.003
37590.003
38620.003
39360.003
40490.003
41270.002
42460.002
43380.002
44190.002
45180.002
4630.002
47600.002
48280.002
49410.002
50230.002
51200.002
52430.002
5360.002
54440.002
55580.002
56140.002
57100.002
58540.002
59300.002
60110.002
61420.001
62390.001
63370.001
64480.001