In [1]:
import os
import sys
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from motif.read_motifs import pfm_info_content, pfm_to_pwm
from util import figure_to_vdom_image
import plot.viz_sequence as viz_sequence
import h5py
import numpy as np
import pyfaidx
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
import tqdm
tqdm.tqdm_notebook()
/users/amtseng/miniconda3/envs/tfmodisco-mini/lib/python3.7/site-packages/ipykernel_launcher.py:14: TqdmDeprecationWarning: This function will be removed in tqdm==5.0.0
Please use `tqdm.notebook.tqdm` instead of `tqdm.tqdm_notebook`
  
Out[1]:
0it [00:00, ?it/s]

Define constants and paths

In [2]:
# Define parameters/fetch arguments
filter_activations_path = os.environ["TFM_FILTER_ACTIVATIONS"]
filter_weights_path = os.environ["TFM_FILTER_WEIGHTS"]

if "TFM_MOTIF_CACHE" in os.environ:
    activation_motifs_cache_dir = os.environ["TFM_MOTIF_CACHE"]
else:
    activation_motifs_cache_dir = None

print("Path to filter activations: %s" % filter_activations_path)
print("Path to filter weights: %s" % filter_weights_path)
print("Saved activation-derived motifs cache: %s" % activation_motifs_cache_dir)
Path to filter activations: /users/amtseng/tfmodisco/results/filter_activations/singletask_profile_finetune/MAX_singletask_profile_finetune_task1_fold1_filter_activations.h5
Path to filter weights: /users/amtseng/tfmodisco/results/filter_weights/singletask_profile_finetune/MAX_singletask_profile_finetune_task1_fold1_filter_weights.npy
Saved activation-derived motifs cache: /users/amtseng/tfmodisco/results/reports/filter_derived_motifs/cache/MAX_singletask_profile_finetune_task1_fold1_filter
In [3]:
# Constants/paths
input_length = 2114
filter_width = 21
reference_genome_path = "/users/amtseng/genomes/hg38.fasta"
In [4]:
if activation_motifs_cache_dir:
    os.makedirs(activation_motifs_cache_dir, exist_ok=True)

Helper functions

For extracting motifs

In [5]:
def dna_to_one_hot(seqs):
    """
    Converts a list of DNA ("ACGT") sequences to one-hot encodings, where the
    position of 1s is ordered alphabetically by "ACGT". `seqs` must be a list
    of N strings, where every string is the same length L. Returns an N x L x 4
    NumPy array of one-hot encodings, in the same order as the input sequences.
    All bases will be converted to upper-case prior to performing the encoding.
    Any bases that are not "ACGT" will be given an encoding of all 0s.
    """
    seq_len = len(seqs[0])
    assert np.all(np.array([len(s) for s in seqs]) == seq_len)

    # Join all sequences together into one long string, all uppercase
    seq_concat = "".join(seqs).upper()

    one_hot_map = np.identity(5)[:, :-1]

    # Convert string into array of ASCII character codes;
    base_vals = np.frombuffer(bytearray(seq_concat, "utf8"), dtype=np.int8)

    # Anything that's not an A, C, G, or T gets assigned a higher code
    base_vals[~np.isin(base_vals, np.array([65, 67, 71, 84]))] = 85

    # Convert the codes into indices in [0, 4], in ascending order by code
    _, base_inds = np.unique(base_vals, return_inverse=True)

    # Get the one-hot encoding for those indices, and reshape back to separate
    return one_hot_map[base_inds].reshape((len(seqs), seq_len, 4))
In [6]:
def extract_filter_activation_motifs(filter_activations_path, reference_genome_path):
    """
    Extracts the motifs that correspond to each filter. Returns an
    F x W x 4 array, where F is the number of filters and W is the width
    of each filter. The order of filters matches those in the saved HDF5/model.
    """
    reader = h5py.File(filter_activations_path, "r")
    activations_reader = reader["activations"]
    num_coords, two, num_windows, num_filters = activations_reader.shape
    
    assert two == 2
    assert num_windows == input_length - filter_width + 1
    
    print("Importing coordinates...")
    coords = np.empty((num_coords, 3), dtype=object)
    coords[:, 0] = reader["coords"]["coords_chrom"][:].astype(str)
    coords[:, 1] = reader["coords"]["coords_start"][:]
    coords[:, 2] = reader["coords"]["coords_end"][:]
    
    print("Fetching one-hot sequences...")
    genome_reader = pyfaidx.Fasta(reference_genome_path)
    one_hot_seqs = np.empty((num_coords, input_length, 4))
    batch_size = 128
    num_batches = int(np.ceil(num_coords / batch_size))
    for i in tqdm.notebook.trange(num_batches):
        batch_slice = slice(i * batch_size, (i + 1) * batch_size)
        one_hot_seqs[batch_slice] = dna_to_one_hot([
            genome_reader[chrom][start:end].seq for chrom, start, end in coords[batch_slice]
        ])
    
    pfms = np.empty((num_filters, filter_width, 4))
    for filter_index in range(num_filters):
        print("Extracting motif for filter %d..." % filter_index)
    
        print("\tComputing maximum activation...")
        acts = activations_reader[:, :, :, filter_index]
        max_act = np.max(acts)
        
        inds = np.where(acts >= 0.5 * max_act)
        
        windows, num_windows = np.zeros((filter_width, 4)), 0
        for coord_index, strand_index, pos_index in tqdm.notebook.tqdm(
            zip(*inds), total=len(inds[0]), desc="Extracting windows..."
        ):
            if strand_index == 0:
                window = one_hot_seqs[coord_index, pos_index : pos_index + filter_width]
            else:
                # Reverse complement; the positions are flipped
                window = np.flip(
                    one_hot_seqs[coord_index, input_length - filter_width - pos_index : input_length - pos_index],
                    axis=(0, 1)
                )
            windows = windows + window
            num_windows += 1
        
        pfms[filter_index] = windows / num_windows
    
    return pfms
In [7]:
def compute_filter_influence(filter_activations_path):
    """
    Extracts the influence of each filter by computing the difference
    in cross entropy when each filter is nullified.
    Returns an F-array, where F is the number of filters, containing the
    change in average cross entropy (after nullification - before
    nullification). The order of filters matches those in the saved
    HDF5/model.
    """
    reader = h5py.File(filter_activations_path, "r")
    print("Reading in cross entropies...")
    before_null_cross_ents = reader["predictions"]["cross_ents"][:]
    after_null_cross_ents = reader["nullified_predictions"]["cross_ents"][:]
    
    before_null = np.nanmean(before_null_cross_ents)
    
    num_filters = after_null_cross_ents.shape[1]
    
    influences = []
    for filter_index in tqdm.notebook.trange(num_filters):
        after_null = np.nanmean(after_null_cross_ents[:, filter_index])
        influences.append(after_null - before_null)
        
    return np.array(influences)
In [8]:
def save_activation_motifs(filter_pfms, filter_influences, path):
    """
    Saves the filter-activation-derived PFMs and influence values.
    """
    with h5py.File(path, "w") as f:
        f.create_dataset("pfms", data=filter_pfms, compression="gzip")
        f.create_dataset("influences", data=filter_influences, compression="gzip")
In [9]:
def load_activation_motifs(path):
    """
    Loads the filter-activation-derived PFMs and influence values.
    """
    with h5py.File(path, "r") as f:
        return f["pfms"][:], f["influences"][:]

Extract motifs from filter activations

Extract the motifs derived from each filter, ranked by filter influence.

Deriving a filter's motif:

  1. Identify the top 10000 most well-predicted input sequences, ranked by cross entropy
  2. For each window in each of these sequences, compute the filter activation for each 1st-layer filter
  3. A filter's motif is the aggregation of sequence windows which activate that filter to at least half its maximum activation (over the top 10000 most well-predicted inputs)

Deriving a filter's influence:

  1. Identify the top 10000 most well-predicted input sequences, ranked by cross entropy
  2. Nullify each filter by setting it to the average activation over these 10000 most well-predicted inputs
  3. A filter's influence is the average change in cross entropy before and after nullification
In [10]:
compute_motifs = True
if activation_motifs_cache_dir:
    # Import if it exists
    cache_path = os.path.join(activation_motifs_cache_dir, "filter_activation_motifs.h5")
    if os.path.exists(cache_path) and os.stat(cache_path).st_size:
        filter_pfms, filter_influences = load_activation_motifs(cache_path)
        compute_motifs = False

if compute_motifs:
    # Extract PFMs of highly-activating sequences
    filter_pfms = extract_filter_activation_motifs(filter_activations_path, reference_genome_path)

    # Compute influence of each filter
    filter_influences = compute_filter_influence(filter_activations_path)

    if activation_motifs_cache_dir:
        save_activation_motifs(filter_pfms, filter_influences, cache_path)
Importing coordinates...
Fetching one-hot sequences...
Extracting motif for filter 0...
	Computing maximum activation...
Extracting motif for filter 1...
	Computing maximum activation...
Extracting motif for filter 2...
	Computing maximum activation...
Extracting motif for filter 3...
	Computing maximum activation...
Extracting motif for filter 4...
	Computing maximum activation...
Extracting motif for filter 5...
	Computing maximum activation...
Extracting motif for filter 6...
	Computing maximum activation...
Extracting motif for filter 7...
	Computing maximum activation...
Extracting motif for filter 8...
	Computing maximum activation...

Extract motifs from filter weights

In [11]:
# Import the filter weights themselves
filter_weights = np.load(filter_weights_path)
assert len(filter_weights.shape) == 3
assert filter_weights.shape[:2] == (filter_width, 4)
filter_weights = np.transpose(filter_weights, axes=(2, 0, 1))  # Shape: F x W x 4

Motifs derived from filter-activating sequences

For each filter, its motif is constructed by averaging all of the sequences that activate it at least to half of its maximal activation. We show the PWMs. The filters are ranked by influence (i.e. the average difference in prediction cross entropy when the filter is nullified--that is, replaced with its average activation).

In [12]:
colgroup = vdomh.colgroup(
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "85%"})
)
header = vdomh.thead(
    vdomh.tr(
        vdomh.th("Rank", style={"text-align": "center"}),
        vdomh.th("Filter index", style={"text-align": "center"}),
        vdomh.th("Influence", style={"text-align": "center"}),
        vdomh.th("PWM", style={"text-align": "center"})
    )
)

body = []
for i, filter_index in enumerate(np.flip(np.argsort(filter_influences))):
    pwm = pfm_to_pwm(filter_pfms[filter_index])
    if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
        # Flip to purine-rich version
        pwm = np.flip(pwm, axis=(0, 1))
    fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
    fig.tight_layout()
    
    body.append(
        vdomh.tr(
            vdomh.td(str(i + 1)),
            vdomh.td(str(filter_index)),
            vdomh.td("%.3f" % filter_influences[filter_index]),
            vdomh.td(figure_to_vdom_image(fig))
        )
    )
    
    if activation_motifs_cache_dir:
        # Save motif PWM
        fig.savefig(os.path.join(activation_motifs_cache_dir, "filter_activation_motif_%d.png" % filter_index))

display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`).
  fig = plt.figure(figsize=figsize)
RankFilter indexInfluencePWM
1100.053
2510.013
3360.010
4460.008
5610.008
6480.004
7240.004
8580.004
9160.004
10350.003
11120.003
12520.003
13280.003
14130.003
15250.002
1610.002
17290.002
18620.002
19110.002
2070.002
21410.002
2240.002
23440.002
24400.002
25490.001
26590.001
27150.001
28140.001
29230.001
3050.001
31340.001
32630.001
33600.001
34170.001
35570.001
36330.001
37540.001
38200.001
39300.001
4090.001
41220.001
42560.001
43450.001
44500.000
45190.000
46260.000
47310.000
48550.000
49320.000
50420.000
51390.000
52180.000
53380.000
54270.000
5520.000
56470.000
5730.000
58530.000
5980.000
6060.000
61210.000
62370.000
6300.000
6443-0.000

Motifs derived from filter weights

For each filter, we show its corresponding motif simply as the mean-normalized multiplicative weights in the filter. For consistency, we rank the filters by influence (as above).

In [13]:
colgroup = vdomh.colgroup(
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "5%"}),
    vdomh.col(style={"width": "85%"})
)
header = vdomh.thead(
    vdomh.tr(
        vdomh.th("Rank", style={"text-align": "center"}),
        vdomh.th("Filter index", style={"text-align": "center"}),
        vdomh.th("Influence", style={"text-align": "center"}),
        vdomh.th("Mean-normalized filter weights", style={"text-align": "center"})
    )
)

body = []
for i, filter_index in enumerate(np.flip(np.argsort(filter_influences))):
    weights = filter_weights[filter_index]
    weights = weights - np.mean(weights, axis=1, keepdims=True)
    if np.sum(weights[:, [0, 2]]) < 0.5 * np.sum(weights):
        # Flip to purine-rich version
        weights = np.flip(weights, axis=(0, 1))
    fig = viz_sequence.plot_weights(weights, figsize=(20, 4), return_fig=True)
    fig.tight_layout()
    
    body.append(
        vdomh.tr(
            vdomh.td(str(i + 1)),
            vdomh.td(str(filter_index)),
            vdomh.td("%.3f" % filter_influences[filter_index]),
            vdomh.td(figure_to_vdom_image(fig))
        )
    )
    
    if activation_motifs_cache_dir:
        # Save motif PWM
        fig.savefig(os.path.join(activation_motifs_cache_dir, "filter_weight_motif_%d.png" % filter_index))

display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
RankFilter indexInfluenceMean-normalized filter weights
1100.053
2510.013
3360.010
4460.008
5610.008
6480.004
7240.004
8580.004
9160.004
10350.003
11120.003
12520.003
13280.003
14130.003
15250.002
1610.002
17290.002
18620.002
19110.002
2070.002
21410.002
2240.002
23440.002
24400.002
25490.001
26590.001
27150.001
28140.001
29230.001
3050.001
31340.001
32630.001
33600.001
34170.001
35570.001
36330.001
37540.001
38200.001
39300.001
4090.001
41220.001
42560.001
43450.001
44500.000
45190.000
46260.000
47310.000
48550.000
49320.000
50420.000
51390.000
52180.000
53380.000
54270.000
5520.000
56470.000
5730.000
58530.000
5980.000
6060.000
61210.000
62370.000
6300.000
6443-0.000