DiChIPMunk: on peaks and on multi-task seqlets and on single-task seqlets
HOMER: on peaks and on multi-task seqlets and on single-task seqlets
MEME: on peaks and on multitask seqlets and on single-task seqlets
import sys
import os
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from util import figure_to_vdom_image
import motif.read_motifs as read_motifs
from motif.read_motifs import pfm_to_pwm
import plot.viz_sequence as viz_sequence
import numpy as np
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
# Define parameters/fetch arguments
tf_name = os.environ["TFM_TF_NAME"]
multitask_fold = int(os.environ["TFM_MULTITASK_FOLD"])
if "TFM_TASK_INDEX" in os.environ:
task_index = int(os.environ["TFM_TASK_INDEX"])
singletask_fold = int(os.environ["TFM_SINGLETASK_FOLD"])
else:
task_index = None
singletask_fold = None
print("TF name: %s" % tf_name)
print("Multi-task fold: %s" % multitask_fold)
print("Task index: %s" % task_index)
print("Single-task fold: %s" % singletask_fold)
TF name: REST Multi-task fold: 7 Task index: 15 Single-task fold: 7
# Define paths and constants
base_path = "/users/amtseng/tfmodisco/results/classic_motifs/"
multitask_seqlets_dir = os.path.join(
base_path, "seqlets", "multitask_profile_finetune",
"%s_multitask_profile_finetune_fold%s" % (tf_name, multitask_fold)
)
if task_index is None:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_taskall" % tf_name)
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_taskall" % tf_name
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_taskall" % tf_name
)
else:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_task%d" % (tf_name, task_index))
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
singletask_seqlets_dir = os.path.join(
base_path, "seqlets", "singletask_profile_finetune",
"%s_singletask_profile_finetune_fold%s" % (tf_name, singletask_fold),
"task_%d" % task_index
)
singletask_profile_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
singletask_count_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
def show_peaks_motif_table(results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`.
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
pfms, score_vals = read_motifs.import_dichipmunk_pfms(results_path)
elif mode == "homer":
score_name = "Log enrichment"
pfms, score_vals = read_motifs.import_homer_pfms(results_path)
elif mode == "meme":
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(results_path)
else:
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(
os.path.join(results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name, style={"text-align": "center"}),
vdomh.th("PWM", style={"text-align": "center"})
)
)
body = []
for i, pfm in enumerate(pfms):
pwm = pfm_to_pwm(pfm)
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
body.append(
vdomh.tr(
vdomh.td(str(i + 1)),
vdomh.td(str(score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
)
)
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
def show_seqlets_motif_table(profile_results_path, count_results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
p_pfms, p_score_vals = read_motifs.import_dichipmunk_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_dichipmunk_pfms(count_results_path)
elif mode == "homer":
score_name = "Log enrichment"
p_pfms, p_score_vals = read_motifs.import_homer_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_homer_pfms(count_results_path)
elif mode == "meme":
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(count_results_path)
else:
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(
os.path.join(profile_results_path, "meme_out")
)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(
os.path.join(count_results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name + " (profile)", style={"text-align": "center"}),
vdomh.th("PWM (profile)", style={"text-align": "center"}),
vdomh.th(score_name + " (count)", style={"text-align": "center"}),
vdomh.th("PWM (count)", style={"text-align": "center"})
)
)
body = []
for i in range(max(len(p_pfms), len(c_pfms))):
rows = [vdomh.td(str(i + 1))]
if i < len(p_pfms):
pwm = pfm_to_pwm(p_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(p_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
if i < len(c_pfms):
pwm = pfm_to_pwm(c_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(c_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
body.append(vdomh.tr(*rows))
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
show_peaks_motif_table(os.path.join(peaks_path, "dichipmunk"), "dichipmunk")
Motif | Supporting sequences | PWM |
---|---|---|
1 | 2000 | |
2 | 2000 | |
3 | 2000 | |
4 | 1966 | |
5 | 1298 | |
6 | 668 | |
7 | 385 | |
8 | 53 | |
9 | 33 | |
10 | 33 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "dichipmunk"),
os.path.join(multitask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 9515 | 12516 | ||
2 | 4176 | 1363 | ||
3 | 342 | 1040 | ||
4 | 183 | 265 | ||
5 | 84 | |||
6 | 3 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "dichipmunk"),
os.path.join(singletask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 11278 | 12679 | ||
2 | 2701 | 1561 | ||
3 | 1137 | 894 | ||
4 | 363 | |||
5 | 134 | |||
6 | 15 |
show_peaks_motif_table(os.path.join(peaks_path, "homer"), "homer")
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure(figsize=figsize)
Motif | Log enrichment | PWM |
---|---|---|
1 | -33720.559701 | |
2 | -9277.300908 | |
3 | -5872.445319 | |
4 | -5334.922393 | |
5 | -5225.446339 | |
6 | -4108.335381 | |
7 | -4061.287522 | |
8 | -2657.087975 | |
9 | -2363.188823 | |
10 | -2058.069198 | |
11 | -1986.573666 | |
12 | -1830.896312 | |
13 | -1745.519658 | |
14 | -1416.489977 | |
15 | -1369.951255 | |
16 | -930.889478 | |
17 | -710.555677 | |
18 | -667.334211 | |
19 | -400.839907 | |
20 | -331.330306 | |
21 | -246.519785 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "homer"),
os.path.join(multitask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -13965.02972 | -24727.287334 | ||
2 | -2462.917111 | -4341.480543 | ||
3 | -1679.604559 | -2929.310981 | ||
4 | -1274.639562 | -2856.410281 | ||
5 | -619.232083 | -959.237901 | ||
6 | -610.325465 | -814.491085 | ||
7 | -278.618352 | -347.821366 | ||
8 | -190.941702 | -190.296915 | ||
9 | -173.731587 | -169.049473 | ||
10 | -155.322935 | -131.75116 | ||
11 | -145.877175 | -91.63589 | ||
12 | -135.446439 | -10.877605 | ||
13 | -103.744383 | |||
14 | -97.150799 | |||
15 | -75.182422 | |||
16 | -52.841934 | |||
17 | -52.19003 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "homer"),
os.path.join(singletask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -13127.008557 | -19663.150709 | ||
2 | -2221.067488 | -2972.836438 | ||
3 | -1855.40349 | -2354.39451 | ||
4 | -1741.404058 | -1776.172491 | ||
5 | -904.880551 | -933.347499 | ||
6 | -881.843932 | -746.162337 | ||
7 | -814.404474 | -574.271278 | ||
8 | -665.72263 | -302.154938 | ||
9 | -205.95821 | -277.020746 | ||
10 | -174.920211 | -169.157668 | ||
11 | -149.700177 | -163.145155 | ||
12 | -125.14977 | -145.080271 | ||
13 | -110.782631 | -134.329507 | ||
14 | -105.359628 | -123.705488 | ||
15 | -70.059424 | |||
16 | -67.990324 | |||
17 | -56.767656 |
show_peaks_motif_table(os.path.join(peaks_path, "memechip"), "memechip")
Motif | E-value | PWM |
---|---|---|
1 | 0.0 | |
2 | 2.7e-85 | |
3 | 1.8e-27 | |
4 | 7.6e-23 | |
5 | 6.9e-31 | |
6 | 3.9e-14 | |
7 | 3e-09 | |
8 | 0.00085 | |
9 | 0.0065 | |
10 | 0.0016 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "meme"),
os.path.join(multitask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 3.2e-70 | 2.4e-103 | ||
3 | 2.5e-28 | 3.3e-48 | ||
4 | 2.5e-28 | 1.7e-28 | ||
5 | 2.5e-28 | 2.5e-22 | ||
6 | 2.9e-22 | 3.1e-12 | ||
7 | 2.3e-20 | 15.0 | ||
8 | 5.6e-14 | 220.0 | ||
9 | 1.2e-14 | 3900.0 | ||
10 | 2e-05 | 38000.0 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "meme"),
os.path.join(singletask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 1.3e-27 | 6.3e-85 | ||
3 | 3.3e-21 | 1.2e-25 | ||
4 | 1.6e-15 | 1.9e-23 | ||
5 | 7.3e-15 | 3.5e-14 | ||
6 | 6.2e-12 | 0.012 | ||
7 | 3.5e-07 | 15.0 | ||
8 | 0.12 | 36.0 | ||
9 | 0.041 | 670.0 | ||
10 | 0.18 | 11000.0 |