DiChIPMunk: on peaks and on multi-task seqlets and on single-task seqlets
HOMER: on peaks and on multi-task seqlets and on single-task seqlets
MEME: on peaks and on multitask seqlets and on single-task seqlets
import sys
import os
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from util import figure_to_vdom_image
import motif.read_motifs as read_motifs
from motif.read_motifs import pfm_to_pwm
import plot.viz_sequence as viz_sequence
import numpy as np
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
# Define parameters/fetch arguments
tf_name = os.environ["TFM_TF_NAME"]
multitask_fold = int(os.environ["TFM_MULTITASK_FOLD"])
if "TFM_TASK_INDEX" in os.environ:
task_index = int(os.environ["TFM_TASK_INDEX"])
singletask_fold = int(os.environ["TFM_SINGLETASK_FOLD"])
else:
task_index = None
singletask_fold = None
print("TF name: %s" % tf_name)
print("Multi-task fold: %s" % multitask_fold)
print("Task index: %s" % task_index)
print("Single-task fold: %s" % singletask_fold)
TF name: NR3C1-reddytime Multi-task fold: 5 Task index: 14 Single-task fold: 5
# Define paths and constants
base_path = "/users/amtseng/tfmodisco/results/classic_motifs/"
multitask_seqlets_dir = os.path.join(
base_path, "seqlets", "multitask_profile_finetune",
"%s_multitask_profile_finetune_fold%s" % (tf_name, multitask_fold)
)
if task_index is None:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_taskall" % tf_name)
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_taskall" % tf_name
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_taskall" % tf_name
)
else:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_task%d" % (tf_name, task_index))
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
singletask_seqlets_dir = os.path.join(
base_path, "seqlets", "singletask_profile_finetune",
"%s_singletask_profile_finetune_fold%s" % (tf_name, singletask_fold),
"task_%d" % task_index
)
singletask_profile_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
singletask_count_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
def show_peaks_motif_table(results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`.
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
pfms, score_vals = read_motifs.import_dichipmunk_pfms(results_path)
elif mode == "homer":
score_name = "Log enrichment"
pfms, score_vals = read_motifs.import_homer_pfms(results_path)
elif mode == "meme":
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(results_path)
else:
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(
os.path.join(results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name, style={"text-align": "center"}),
vdomh.th("PWM", style={"text-align": "center"})
)
)
body = []
for i, pfm in enumerate(pfms):
pwm = pfm_to_pwm(pfm)
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
body.append(
vdomh.tr(
vdomh.td(str(i + 1)),
vdomh.td(str(score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
)
)
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
def show_seqlets_motif_table(profile_results_path, count_results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
p_pfms, p_score_vals = read_motifs.import_dichipmunk_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_dichipmunk_pfms(count_results_path)
elif mode == "homer":
score_name = "Log enrichment"
p_pfms, p_score_vals = read_motifs.import_homer_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_homer_pfms(count_results_path)
elif mode == "meme":
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(count_results_path)
else:
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(
os.path.join(profile_results_path, "meme_out")
)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(
os.path.join(count_results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name + " (profile)", style={"text-align": "center"}),
vdomh.th("PWM (profile)", style={"text-align": "center"}),
vdomh.th(score_name + " (count)", style={"text-align": "center"}),
vdomh.th("PWM (count)", style={"text-align": "center"})
)
)
body = []
for i in range(max(len(p_pfms), len(c_pfms))):
rows = [vdomh.td(str(i + 1))]
if i < len(p_pfms):
pwm = pfm_to_pwm(p_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(p_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
if i < len(c_pfms):
pwm = pfm_to_pwm(c_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(c_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
body.append(vdomh.tr(*rows))
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
show_peaks_motif_table(os.path.join(peaks_path, "dichipmunk"), "dichipmunk")
Motif | Supporting sequences | PWM |
---|---|---|
1 | 1563 | |
2 | 1270 | |
3 | 1484 | |
4 | 1053 | |
5 | 1200 | |
6 | 975 | |
7 | 1984 | |
8 | 1993 | |
9 | 1955 | |
10 | 1951 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "dichipmunk"),
os.path.join(multitask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 13118 | 11363 | ||
2 | 764 | 1016 | ||
3 | 187 | 335 | ||
4 | 83 | 24 | ||
5 | 31 | 18 | ||
6 | 2 | 1 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "dichipmunk"),
os.path.join(singletask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 13249 | 13387 | ||
2 | 1798 | 725 | ||
3 | 415 | 166 | ||
4 | 127 | 40 | ||
5 | 58 | 14 | ||
6 | 23 | 6 | ||
7 | 2 | 1 |
show_peaks_motif_table(os.path.join(peaks_path, "homer"), "homer")
Motif | Log enrichment | PWM |
---|---|---|
1 | -7135.19178 | |
2 | -6388.83732 | |
3 | -3642.65872 | |
4 | -2673.250841 | |
5 | -2578.909878 | |
6 | -2374.821526 | |
7 | -2227.397256 | |
8 | -2133.976795 | |
9 | -1566.415448 | |
10 | -1099.116245 | |
11 | -922.343232 | |
12 | -739.433867 | |
13 | -661.091492 | |
14 | -538.708705 | |
15 | -225.140805 | |
16 | -190.419245 | |
17 | -178.531379 | |
18 | -178.023017 | |
19 | -122.646912 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "homer"),
os.path.join(multitask_count_seqlets_path, "homer"),
"homer"
)
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure(figsize=figsize)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -9096.660679 | -14123.82969 | ||
2 | -8090.610661 | -9169.013507 | ||
3 | -3970.057226 | -3511.642407 | ||
4 | -2460.293965 | -2361.201618 | ||
5 | -674.707703 | -555.386525 | ||
6 | -316.027473 | -507.578442 | ||
7 | -228.030659 | -496.506945 | ||
8 | -174.342583 | -375.519784 | ||
9 | -167.303172 | -173.606164 | ||
10 | -11.704585 | -100.527781 | ||
11 | -90.031078 | |||
12 | -86.783399 | |||
13 | -73.677671 | |||
14 | -73.407493 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "homer"),
os.path.join(singletask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -10915.665045 | -16289.6339 | ||
2 | -8727.119024 | -11083.71215 | ||
3 | -3745.136474 | -2753.10407 | ||
4 | -3175.732945 | -2028.516287 | ||
5 | -1449.361581 | -394.844923 | ||
6 | -637.656347 | -184.937498 | ||
7 | -353.9726 | -180.376536 | ||
8 | -296.441795 | -168.431588 | ||
9 | -269.107106 | -163.39633 | ||
10 | -236.768435 | -138.604153 | ||
11 | -115.160135 | -131.854756 | ||
12 | -86.402695 | -65.021782 |
show_peaks_motif_table(os.path.join(peaks_path, "memechip"), "memechip")
Motif | E-value | PWM |
---|---|---|
1 | 6.5e-189 | |
2 | 3.3e-69 | |
3 | 1.6e-56 | |
4 | 2e-30 | |
5 | 7e-29 | |
6 | 9.8e-24 | |
7 | 3.1e-17 | |
8 | 4.4e-15 | |
9 | 1e-08 | |
10 | 0.0031 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "meme"),
os.path.join(multitask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 1.8e-206 | 2.3e-274 | ||
3 | 2.6e-45 | 4.1e-49 | ||
4 | 1.6e-25 | 2.9e-20 | ||
5 | 8.5e-06 | 3.5e-07 | ||
6 | 11000.0 | 1.2e-06 | ||
7 | 9000.0 | 5700.0 | ||
8 | 50000.0 | 30000.0 | ||
9 | 87000.0 | 88000.0 | ||
10 | 1100000.0 | 230000.0 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "meme"),
os.path.join(singletask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 2.6e-313 | 0.0 | ||
2 | 4e-160 | 0.0 | ||
3 | 8.6e-22 | 2.4e-45 | ||
4 | 1.4e-11 | 1.8e-16 | ||
5 | 0.78 | 0.0013 | ||
6 | 3000.0 | 76.0 | ||
7 | 31000.0 | 1300.0 | ||
8 | 94000.0 | 24000.0 | ||
9 | 250000.0 | 38000.0 | ||
10 | 540000.0 | 46000.0 |