DiChIPMunk: on peaks and on multi-task seqlets and on single-task seqlets
HOMER: on peaks and on multi-task seqlets and on single-task seqlets
MEME: on peaks and on multitask seqlets and on single-task seqlets
import sys
import os
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from util import figure_to_vdom_image
import motif.read_motifs as read_motifs
from motif.read_motifs import pfm_to_pwm
import plot.viz_sequence as viz_sequence
import numpy as np
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
# Define parameters/fetch arguments
tf_name = os.environ["TFM_TF_NAME"]
multitask_fold = int(os.environ["TFM_MULTITASK_FOLD"])
if "TFM_TASK_INDEX" in os.environ:
task_index = int(os.environ["TFM_TASK_INDEX"])
singletask_fold = int(os.environ["TFM_SINGLETASK_FOLD"])
else:
task_index = None
singletask_fold = None
print("TF name: %s" % tf_name)
print("Multi-task fold: %s" % multitask_fold)
print("Task index: %s" % task_index)
print("Single-task fold: %s" % singletask_fold)
TF name: JUND Multi-task fold: 7 Task index: 4 Single-task fold: 5
# Define paths and constants
base_path = "/users/amtseng/tfmodisco/results/classic_motifs/"
multitask_seqlets_dir = os.path.join(
base_path, "seqlets", "multitask_profile_finetune",
"%s_multitask_profile_finetune_fold%s" % (tf_name, multitask_fold)
)
if task_index is None:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_taskall" % tf_name)
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_taskall" % tf_name
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_taskall" % tf_name
)
else:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_task%d" % (tf_name, task_index))
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
singletask_seqlets_dir = os.path.join(
base_path, "seqlets", "singletask_profile_finetune",
"%s_singletask_profile_finetune_fold%s" % (tf_name, singletask_fold),
"task_%d" % task_index
)
singletask_profile_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
singletask_count_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
def show_peaks_motif_table(results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`.
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
pfms, score_vals = read_motifs.import_dichipmunk_pfms(results_path)
elif mode == "homer":
score_name = "Log enrichment"
pfms, score_vals = read_motifs.import_homer_pfms(results_path)
elif mode == "meme":
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(results_path)
else:
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(
os.path.join(results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name, style={"text-align": "center"}),
vdomh.th("PWM", style={"text-align": "center"})
)
)
body = []
for i, pfm in enumerate(pfms):
pwm = pfm_to_pwm(pfm)
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
body.append(
vdomh.tr(
vdomh.td(str(i + 1)),
vdomh.td(str(score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
)
)
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
def show_seqlets_motif_table(profile_results_path, count_results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
p_pfms, p_score_vals = read_motifs.import_dichipmunk_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_dichipmunk_pfms(count_results_path)
elif mode == "homer":
score_name = "Log enrichment"
p_pfms, p_score_vals = read_motifs.import_homer_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_homer_pfms(count_results_path)
elif mode == "meme":
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(count_results_path)
else:
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(
os.path.join(profile_results_path, "meme_out")
)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(
os.path.join(count_results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name + " (profile)", style={"text-align": "center"}),
vdomh.th("PWM (profile)", style={"text-align": "center"}),
vdomh.th(score_name + " (count)", style={"text-align": "center"}),
vdomh.th("PWM (count)", style={"text-align": "center"})
)
)
body = []
for i in range(max(len(p_pfms), len(c_pfms))):
rows = [vdomh.td(str(i + 1))]
if i < len(p_pfms):
pwm = pfm_to_pwm(p_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(p_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
if i < len(c_pfms):
pwm = pfm_to_pwm(c_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(c_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
body.append(vdomh.tr(*rows))
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
show_peaks_motif_table(os.path.join(peaks_path, "dichipmunk"), "dichipmunk")
Motif | Supporting sequences | PWM |
---|---|---|
1 | 1994 | |
2 | 2000 | |
3 | 2000 | |
4 | 1985 | |
5 | 1257 | |
6 | 698 | |
7 | 336 | |
8 | 139 | |
9 | 47 | |
10 | 1 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "dichipmunk"),
os.path.join(multitask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 15233 | 12596 | ||
2 | 1595 | 5066 | ||
3 | 546 | 1000 | ||
4 | 157 | 201 | ||
5 | 49 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "dichipmunk"),
os.path.join(singletask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 14663 | 11664 | ||
2 | 1945 | 6530 | ||
3 | 765 | 571 | ||
4 | 310 | 227 | ||
5 | 53 | 85 | ||
6 | 16 | 27 |
show_peaks_motif_table(os.path.join(peaks_path, "homer"), "homer")
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure(figsize=figsize)
Motif | Log enrichment | PWM |
---|---|---|
1 | -44964.062225 | |
2 | -7784.904282 | |
3 | -6362.47388 | |
4 | -3469.724962 | |
5 | -3249.537391 | |
6 | -3189.499274 | |
7 | -3080.976416 | |
8 | -2739.940122 | |
9 | -1423.092244 | |
10 | -1295.474771 | |
11 | -1277.562541 | |
12 | -1086.653284 | |
13 | -880.8432 | |
14 | -676.619463 | |
15 | -390.633017 | |
16 | -343.639083 | |
17 | -285.585775 | |
18 | -211.673445 | |
19 | -199.6982 | |
20 | -196.174396 | |
21 | -167.177014 | |
22 | -108.069554 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "homer"),
os.path.join(multitask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -30946.496977 | -51436.946443 | ||
2 | -1150.94794 | -1722.754963 | ||
3 | -503.619555 | -839.015677 | ||
4 | -471.816338 | -231.082537 | ||
5 | -169.231885 | -174.741048 | ||
6 | -155.806142 | -93.217588 | ||
7 | -150.318024 | -89.042175 | ||
8 | -141.942525 | -79.625301 | ||
9 | -127.444889 | -70.195515 | ||
10 | -113.09231 | -46.614346 | ||
11 | -108.952427 | -43.18483 | ||
12 | -104.278808 | -38.813469 | ||
13 | -90.175715 | |||
14 | -21.058226 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "homer"),
os.path.join(singletask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -27779.871584 | -57840.033394 | ||
2 | -2240.756682 | -1715.438435 | ||
3 | -704.840414 | -723.333826 | ||
4 | -702.256406 | -424.007217 | ||
5 | -445.299 | -181.169869 | ||
6 | -205.074756 | -145.506412 | ||
7 | -182.252055 | -132.777083 | ||
8 | -138.12075 | -111.849804 | ||
9 | -131.934025 | -107.745975 | ||
10 | -127.139559 | -91.629655 | ||
11 | -119.739413 | -76.028074 | ||
12 | -112.770864 | -44.857514 | ||
13 | -43.943255 |
show_peaks_motif_table(os.path.join(peaks_path, "memechip"), "memechip")
Motif | E-value | PWM |
---|---|---|
1 | 0.0 | |
2 | 1.4e-64 | |
3 | 9.9e-28 | |
4 | 2.7e-25 | |
5 | 1.2e-16 | |
6 | 1.6e-07 | |
7 | 0.21 | |
8 | 7.9 | |
9 | 40.0 | |
10 | 260.0 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "meme"),
os.path.join(multitask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 5.6e-07 | 7.7e-39 | ||
3 | 0.00044 | 3.8e-22 | ||
4 | 61000.0 | 91000.0 | ||
5 | 200000.0 | 670000.0 | ||
6 | 230000.0 | 1300000.0 | ||
7 | 500000.0 | 1500000.0 | ||
8 | 590000.0 | 1600000.0 | ||
9 | 620000.0 | 2300000.0 | ||
10 | 420000.0 | 2400000.0 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "meme"),
os.path.join(singletask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 8.3e-24 | 0.00011 | ||
3 | 2.3e-10 | 0.068 | ||
4 | 960.0 | 19000.0 | ||
5 | 47000.0 | 99000.0 | ||
6 | 55000.0 | 730000.0 | ||
7 | 130000.0 | 1100000.0 | ||
8 | 75000.0 | 3200000.0 | ||
9 | 160000.0 | 2000000.0 | ||
10 | 300000.0 | 3400000.0 |