DiChIPMunk: on peaks and on multi-task seqlets and on single-task seqlets
HOMER: on peaks and on multi-task seqlets and on single-task seqlets
MEME: on peaks and on multitask seqlets and on single-task seqlets
import sys
import os
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from util import figure_to_vdom_image
import motif.read_motifs as read_motifs
from motif.read_motifs import pfm_to_pwm
import plot.viz_sequence as viz_sequence
import numpy as np
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
# Define parameters/fetch arguments
tf_name = os.environ["TFM_TF_NAME"]
multitask_fold = int(os.environ["TFM_MULTITASK_FOLD"])
if "TFM_TASK_INDEX" in os.environ:
task_index = int(os.environ["TFM_TASK_INDEX"])
singletask_fold = int(os.environ["TFM_SINGLETASK_FOLD"])
else:
task_index = None
singletask_fold = None
print("TF name: %s" % tf_name)
print("Multi-task fold: %s" % multitask_fold)
print("Task index: %s" % task_index)
print("Single-task fold: %s" % singletask_fold)
TF name: JUND Multi-task fold: 7 Task index: 2 Single-task fold: 5
# Define paths and constants
base_path = "/users/amtseng/tfmodisco/results/classic_motifs/"
multitask_seqlets_dir = os.path.join(
base_path, "seqlets", "multitask_profile_finetune",
"%s_multitask_profile_finetune_fold%s" % (tf_name, multitask_fold)
)
if task_index is None:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_taskall" % tf_name)
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_taskall" % tf_name
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_taskall" % tf_name
)
else:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_task%d" % (tf_name, task_index))
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
singletask_seqlets_dir = os.path.join(
base_path, "seqlets", "singletask_profile_finetune",
"%s_singletask_profile_finetune_fold%s" % (tf_name, singletask_fold),
"task_%d" % task_index
)
singletask_profile_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
singletask_count_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
def show_peaks_motif_table(results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`.
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
pfms, score_vals = read_motifs.import_dichipmunk_pfms(results_path)
elif mode == "homer":
score_name = "Log enrichment"
pfms, score_vals = read_motifs.import_homer_pfms(results_path)
elif mode == "meme":
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(results_path)
else:
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(
os.path.join(results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name, style={"text-align": "center"}),
vdomh.th("PWM", style={"text-align": "center"})
)
)
body = []
for i, pfm in enumerate(pfms):
pwm = pfm_to_pwm(pfm)
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
body.append(
vdomh.tr(
vdomh.td(str(i + 1)),
vdomh.td(str(score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
)
)
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
def show_seqlets_motif_table(profile_results_path, count_results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
p_pfms, p_score_vals = read_motifs.import_dichipmunk_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_dichipmunk_pfms(count_results_path)
elif mode == "homer":
score_name = "Log enrichment"
p_pfms, p_score_vals = read_motifs.import_homer_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_homer_pfms(count_results_path)
elif mode == "meme":
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(count_results_path)
else:
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(
os.path.join(profile_results_path, "meme_out")
)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(
os.path.join(count_results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name + " (profile)", style={"text-align": "center"}),
vdomh.th("PWM (profile)", style={"text-align": "center"}),
vdomh.th(score_name + " (count)", style={"text-align": "center"}),
vdomh.th("PWM (count)", style={"text-align": "center"})
)
)
body = []
for i in range(max(len(p_pfms), len(c_pfms))):
rows = [vdomh.td(str(i + 1))]
if i < len(p_pfms):
pwm = pfm_to_pwm(p_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(p_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
if i < len(c_pfms):
pwm = pfm_to_pwm(c_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(c_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
body.append(vdomh.tr(*rows))
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
show_peaks_motif_table(os.path.join(peaks_path, "dichipmunk"), "dichipmunk")
Motif | Supporting sequences | PWM |
---|---|---|
1 | 1992 | |
2 | 2000 | |
3 | 2000 | |
4 | 1960 | |
5 | 1302 | |
6 | 718 | |
7 | 422 | |
8 | 240 | |
9 | 159 | |
10 | 114 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "dichipmunk"),
os.path.join(multitask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 11588 | 8259 | ||
2 | 3974 | 1998 | ||
3 | 898 | 510 | ||
4 | 303 | |||
5 | 72 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "dichipmunk"),
os.path.join(singletask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 10843 | 8924 | ||
2 | 3496 | 3280 | ||
3 | 1074 | 1274 | ||
4 | 296 | |||
5 | 139 | |||
6 | 89 | |||
7 | 10 | |||
8 | 6 |
show_peaks_motif_table(os.path.join(peaks_path, "homer"), "homer")
Motif | Log enrichment | PWM |
---|---|---|
1 | -18216.633581 | |
2 | -2814.444974 | |
3 | -2595.463122 | |
4 | -1952.462896 | |
5 | -1774.935932 | |
6 | -1462.042248 | |
7 | -1175.225533 | |
8 | -1114.641505 | |
9 | -1073.262042 | |
10 | -1018.855211 | |
11 | -935.870045 | |
12 | -641.785341 | |
13 | -620.416419 | |
14 | -591.403771 | |
15 | -484.710008 | |
16 | -347.569743 | |
17 | -261.628323 | |
18 | -223.366887 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "homer"),
os.path.join(multitask_count_seqlets_path, "homer"),
"homer"
)
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure(figsize=figsize)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -27516.496472 | -36339.335639 | ||
2 | -1802.885016 | -2392.361199 | ||
3 | -800.450694 | -585.114909 | ||
4 | -718.888813 | -390.902665 | ||
5 | -687.842393 | -130.314522 | ||
6 | -493.607655 | -122.771009 | ||
7 | -490.268633 | -102.300666 | ||
8 | -409.332322 | -75.561393 | ||
9 | -378.388228 | -53.555032 | ||
10 | -366.533271 | -33.093058 | ||
11 | -321.180733 | |||
12 | -192.957249 | |||
13 | -177.630348 | |||
14 | -95.271553 | |||
15 | -68.551833 | |||
16 | -55.824414 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "homer"),
os.path.join(singletask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -20996.04522 | -36031.786514 | ||
2 | -2846.940946 | -3013.023096 | ||
3 | -1565.302111 | -1324.993178 | ||
4 | -918.649663 | -825.760002 | ||
5 | -628.698675 | -709.636866 | ||
6 | -557.359442 | -596.490743 | ||
7 | -537.697089 | -242.949415 | ||
8 | -522.713757 | -133.045088 | ||
9 | -368.0478 | -131.525778 | ||
10 | -368.0478 | -126.743173 | ||
11 | -257.177466 | -65.065909 | ||
12 | -257.177466 | -51.009951 | ||
13 | -232.901011 | -21.892039 | ||
14 | -219.893555 | |||
15 | -193.839921 | |||
16 | -193.839921 | |||
17 | -189.347687 | |||
18 | -131.823056 | |||
19 | -76.998219 | |||
20 | -21.829425 | |||
21 | -16.070194 |
show_peaks_motif_table(os.path.join(peaks_path, "memechip"), "memechip")
Motif | E-value | PWM |
---|---|---|
1 | 0.0 | |
2 | 1.1e-110 | |
3 | 1.4e-24 | |
4 | 0.0028 | |
5 | 1.5e-07 | |
6 | 0.0063 | |
7 | 2.5 | |
8 | 3.4 | |
9 | 36.0 | |
10 | 80.0 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "meme"),
os.path.join(multitask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 4.2e-65 | 3.1e-102 | ||
3 | 1.9e-26 | 370.0 | ||
4 | 0.018 | 83000.0 | ||
5 | 0.025 | 850000.0 | ||
6 | 7.0 | 4000000.0 | ||
7 | 1600.0 | 6500000.0 | ||
8 | 2500.0 | 7400000.0 | ||
9 | 16000.0 | 9600000.0 | ||
10 | 200000.0 | 9700000.0 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "meme"),
os.path.join(singletask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 6.9e-67 | 1.1e-38 | ||
3 | 2.5e-62 | 1.7e-33 | ||
4 | 4.8e-41 | 830000.0 | ||
5 | 2.4e-15 | 1800000.0 | ||
6 | 8.3e-09 | 3200000.0 | ||
7 | 1.2e-06 | 4600000.0 | ||
8 | 2.7e-06 | 4800000.0 | ||
9 | 30.0 | 6100000.0 | ||
10 | 470.0 | 7800000.0 |