DiChIPMunk: on peaks and on multi-task seqlets and on single-task seqlets
HOMER: on peaks and on multi-task seqlets and on single-task seqlets
MEME: on peaks and on multitask seqlets and on single-task seqlets
import sys
import os
sys.path.append(os.path.abspath("/users/amtseng/tfmodisco/src/"))
from util import figure_to_vdom_image
import motif.read_motifs as read_motifs
from motif.read_motifs import pfm_to_pwm
import plot.viz_sequence as viz_sequence
import numpy as np
import matplotlib.pyplot as plt
import vdom.helpers as vdomh
from IPython.display import display
# Define parameters/fetch arguments
tf_name = os.environ["TFM_TF_NAME"]
multitask_fold = int(os.environ["TFM_MULTITASK_FOLD"])
if "TFM_TASK_INDEX" in os.environ:
task_index = int(os.environ["TFM_TASK_INDEX"])
singletask_fold = int(os.environ["TFM_SINGLETASK_FOLD"])
else:
task_index = None
singletask_fold = None
print("TF name: %s" % tf_name)
print("Multi-task fold: %s" % multitask_fold)
print("Task index: %s" % task_index)
print("Single-task fold: %s" % singletask_fold)
TF name: JUND Multi-task fold: 7 Task index: 13 Single-task fold: 9
# Define paths and constants
base_path = "/users/amtseng/tfmodisco/results/classic_motifs/"
multitask_seqlets_dir = os.path.join(
base_path, "seqlets", "multitask_profile_finetune",
"%s_multitask_profile_finetune_fold%s" % (tf_name, multitask_fold)
)
if task_index is None:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_taskall" % tf_name)
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_taskall" % tf_name
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_taskall" % tf_name
)
else:
peaks_path = os.path.join(base_path, "peaks", tf_name, "%s_peaks_task%d" % (tf_name, task_index))
multitask_profile_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
multitask_count_seqlets_path = os.path.join(
multitask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
singletask_seqlets_dir = os.path.join(
base_path, "seqlets", "singletask_profile_finetune",
"%s_singletask_profile_finetune_fold%s" % (tf_name, singletask_fold),
"task_%d" % task_index
)
singletask_profile_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_profile_task%d" % (tf_name, task_index)
)
singletask_count_seqlets_path = os.path.join(
singletask_seqlets_dir,
"%s_seqlets_count_task%d" % (tf_name, task_index)
)
def show_peaks_motif_table(results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`.
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
pfms, score_vals = read_motifs.import_dichipmunk_pfms(results_path)
elif mode == "homer":
score_name = "Log enrichment"
pfms, score_vals = read_motifs.import_homer_pfms(results_path)
elif mode == "meme":
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(results_path)
else:
score_name = "E-value"
pfms, score_vals = read_motifs.import_meme_pfms(
os.path.join(results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name, style={"text-align": "center"}),
vdomh.th("PWM", style={"text-align": "center"})
)
)
body = []
for i, pfm in enumerate(pfms):
pwm = pfm_to_pwm(pfm)
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
body.append(
vdomh.tr(
vdomh.td(str(i + 1)),
vdomh.td(str(score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
)
)
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
def show_seqlets_motif_table(profile_results_path, count_results_path, mode):
"""
Shows a table of motifs from the given results path.
`mode` is either `dichipmunk`, `homer`, `meme`, or `memechip`
"""
assert mode in ("dichipmunk", "homer", "meme", "memechip")
if mode == "dichipmunk":
score_name = "Supporting sequences"
p_pfms, p_score_vals = read_motifs.import_dichipmunk_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_dichipmunk_pfms(count_results_path)
elif mode == "homer":
score_name = "Log enrichment"
p_pfms, p_score_vals = read_motifs.import_homer_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_homer_pfms(count_results_path)
elif mode == "meme":
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(profile_results_path)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(count_results_path)
else:
score_name = "E-value"
p_pfms, p_score_vals = read_motifs.import_meme_pfms(
os.path.join(profile_results_path, "meme_out")
)
c_pfms, c_score_vals = read_motifs.import_meme_pfms(
os.path.join(count_results_path, "meme_out")
)
colgroup = vdomh.colgroup(
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"}),
vdomh.col(style={"width": "5%"}),
vdomh.col(style={"width": "40%"})
)
header = vdomh.thead(
vdomh.tr(
vdomh.th("Motif", style={"text-align": "center"}),
vdomh.th(score_name + " (profile)", style={"text-align": "center"}),
vdomh.th("PWM (profile)", style={"text-align": "center"}),
vdomh.th(score_name + " (count)", style={"text-align": "center"}),
vdomh.th("PWM (count)", style={"text-align": "center"})
)
)
body = []
for i in range(max(len(p_pfms), len(c_pfms))):
rows = [vdomh.td(str(i + 1))]
if i < len(p_pfms):
pwm = pfm_to_pwm(p_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(p_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
if i < len(c_pfms):
pwm = pfm_to_pwm(c_pfms[i])
if np.sum(pwm[:, [0, 2]]) < 0.5 * np.sum(pwm):
# Flip to purine-rich version
pwm = np.flip(pwm, axis=(0, 1))
fig = viz_sequence.plot_weights(pwm, figsize=(20, 4), return_fig=True)
fig.tight_layout()
rows.extend([
vdomh.td(str(c_score_vals[i])),
vdomh.td(figure_to_vdom_image(fig))
])
else:
rows.extend([vdomh.td(), vdomh.td()])
body.append(vdomh.tr(*rows))
display(vdomh.table(colgroup, header, vdomh.tbody(*body)))
plt.close("all")
show_peaks_motif_table(os.path.join(peaks_path, "dichipmunk"), "dichipmunk")
Motif | Supporting sequences | PWM |
---|---|---|
1 | 1631 | |
2 | 2000 | |
3 | 2000 | |
4 | 2000 | |
5 | 1977 | |
6 | 1400 | |
7 | 719 | |
8 | 398 | |
9 | 270 | |
10 | 184 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "dichipmunk"),
os.path.join(multitask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 10293 | 10381 | ||
2 | 3646 | 3564 | ||
3 | 2238 | 1035 | ||
4 | 226 | |||
5 | 174 | |||
6 | 49 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "dichipmunk"),
os.path.join(singletask_count_seqlets_path, "dichipmunk"),
"dichipmunk"
)
Motif | Supporting sequences (profile) | PWM (profile) | Supporting sequences (count) | PWM (count) |
---|---|---|---|---|
1 | 8289 | 6899 | ||
2 | 3622 | 7243 | ||
3 | 284 | 903 | ||
4 | 349 | 190 | ||
5 | 40 | |||
6 | 11 | |||
7 | 1 |
show_peaks_motif_table(os.path.join(peaks_path, "homer"), "homer")
Motif | Log enrichment | PWM |
---|---|---|
1 | -8557.304323 | |
2 | -8270.778321 | |
3 | -7750.93572 | |
4 | -5576.285561 | |
5 | -4835.116214 | |
6 | -4318.242585 | |
7 | -4253.004818 | |
8 | -2756.924667 | |
9 | -2605.562257 | |
10 | -2454.571333 | |
11 | -2253.761979 | |
12 | -2188.483989 | |
13 | -1879.205013 | |
14 | -1866.035449 | |
15 | -1224.515505 | |
16 | -1038.157426 | |
17 | -824.421472 | |
18 | -767.235782 | |
19 | -53.004361 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "homer"),
os.path.join(multitask_count_seqlets_path, "homer"),
"homer"
)
/users/amtseng/tfmodisco/src/plot/viz_sequence.py:152: RuntimeWarning: More than 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To control this warning, see the rcParam `figure.max_open_warning`). fig = plt.figure(figsize=figsize)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -22031.310365 | -24143.978343 | ||
2 | -4742.197811 | -6423.783341 | ||
3 | -811.789367 | -1522.565653 | ||
4 | -443.045531 | -800.302405 | ||
5 | -329.070462 | -499.342606 | ||
6 | -281.829257 | -357.564648 | ||
7 | -267.958885 | -335.233163 | ||
8 | -235.490636 | -184.602845 | ||
9 | -172.095739 | -163.744109 | ||
10 | -158.155208 | -134.02333 | ||
11 | -133.527094 | -103.193306 | ||
12 | -127.097971 | -87.454711 | ||
13 | -100.297271 | -34.579683 | ||
14 | -93.808741 | -21.93734 | ||
15 | -87.668779 | |||
16 | -57.229738 | |||
17 | -35.999846 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "homer"),
os.path.join(singletask_count_seqlets_path, "homer"),
"homer"
)
Motif | Log enrichment (profile) | PWM (profile) | Log enrichment (count) | PWM (count) |
---|---|---|---|---|
1 | -9115.819172 | -12807.21582 | ||
2 | -8113.92155 | -10995.710144 | ||
3 | -5303.312684 | -6296.981186 | ||
4 | -2739.985622 | -2928.481488 | ||
5 | -1736.851724 | -2496.391192 | ||
6 | -1102.399064 | -1422.364307 | ||
7 | -891.066577 | -559.968251 | ||
8 | -792.987231 | -546.86655 | ||
9 | -477.145627 | -365.278744 | ||
10 | -364.285571 | -258.873761 | ||
11 | -192.170066 | -205.602322 | ||
12 | -105.730487 | -50.525517 | ||
13 | -104.321568 | |||
14 | -29.215077 | |||
15 | -3.549076 |
show_peaks_motif_table(os.path.join(peaks_path, "memechip"), "memechip")
Motif | E-value | PWM |
---|---|---|
1 | 1.9e-157 | |
2 | 2.5e-53 | |
3 | 7.6e-53 | |
4 | 1.6e-52 | |
5 | 4.9e-30 | |
6 | 4.4e-30 | |
7 | 2.6e-20 | |
8 | 4.5e-16 | |
9 | 4.3e-11 | |
10 | 8.3e-06 |
show_seqlets_motif_table(
os.path.join(multitask_profile_seqlets_path, "meme"),
os.path.join(multitask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 0.0 | 0.0 | ||
2 | 1.2e-89 | 1.5e-256 | ||
3 | 0.022 | 2.5e-111 | ||
4 | 53.0 | 3.3e-32 | ||
5 | 89.0 | 2e-13 | ||
6 | 230.0 | 9100.0 | ||
7 | 8000.0 | 31000.0 | ||
8 | 13000.0 | 93000.0 | ||
9 | 6100.0 | 560000.0 | ||
10 | 15000.0 | 940000.0 |
if task_index is not None:
show_seqlets_motif_table(
os.path.join(singletask_profile_seqlets_path, "meme"),
os.path.join(singletask_count_seqlets_path, "meme"),
"meme"
)
Motif | E-value (profile) | PWM (profile) | E-value (count) | PWM (count) |
---|---|---|---|---|
1 | 3.8e-209 | 0.0 | ||
2 | 1.3e-212 | 6.4e-312 | ||
3 | 7.2e-84 | 1.7e-79 | ||
4 | 1.6e-35 | 1.5e-54 | ||
5 | 0.0002 | 6.9e-05 | ||
6 | 0.74 | 0.0054 | ||
7 | 11.0 | 3.2 | ||
8 | 1600.0 | 690000.0 | ||
9 | 4400.0 | 1300000.0 | ||
10 | 25000.0 | 3700000.0 |