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Abstract

Motivation: In silico bacterial, viral, and human truth datasets were generated to evaluate available
metagenomics algorithms. Sequenced datasets include background organisms, creating ambiguity in the
true source organism for each read. Bacterial and viral datasets were created with even and staggered
coverage to evaluate organism identification, read mapping, and gene identification capabilities of available
algorithms. These truth datasets are provided as a resource for the development and refinement of
metagenomic algorithms. Algorithm performance on these truth datasets can inform decision makers on
strengths and weaknesses of available algorithms and how the results may be best leveraged for bacterial
and viral organism identification and characterization.
Results: Algorithms were evaluated on runtime, true positive organisms identified to the genus and species
levels, false positive organisms identified to genus and species level, read mapping, relative abundance
estimation, and gene calling. No algorithm out performed the others in all categories, and the algorithm or
algorithms of choice strongly depends on analysis goals. MetaPhlAn excels for bacteria and One Codex,
followed by LMAT, for viruses. The algorithms were ranked by overall performance using a normalized
weighted sum of the above metrics, and MetaScope emerged as the overall winner, followed by One
Codex, Kraken and LMAT. Simulated FASTQ datasets with well-characterized truth data about microbial
community composition reveal numerous insights about the relative strengths and weaknesses of the
metagenomics algorithms evaluated.
Availability:The simulated datasets are available to download from the Sequence Read Archive
(SRP062063).
Contact: Darrell.Ricke@ll.mit.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Background
Continuing advances in sequencing technologies are increasing the
feasibility of sequencing entire microbial communities rather than
individual organisms. This has led to rapid developments in the field
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of metagenomics aimed at studying genomic material recovered directly
from environmental and medical samples. Sequencing the metagenome
enables the capture of greater genetic diversity than can be sampled
with highly targeted approaches such as microarrays. Metagenomic
sequencing has a number of applications for medical diagnostics (i.e.
human gut microbiome analysis), environmental profiling (i.e. soil
samples), and homeland defense(16)-(34). Metagenomic techniques also
enable the study of communities of organisms simulated in vitro(20).
Simultaneously, a number of bioinformatics tools have been developed to
analyze metagenomic sample data. They employ a variety of techniques to
achieve the opposing goals of high accuracy and low runtime. In this study,
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Fig. 1. Performance metrics for 6 metagenomic analysis algorithms across the 6 in silico evaluation datasets. Algorithms evaluated include MetaCV (red line), MetaPhlAn (blue line),
Kraken (green line), MetaScope (pink line), LMAT (brown line), MetaPhyler (orange line), One Codex (gray line). Metrics evaluated include true positives (TP) to genus level, TP to species
level, false positives (FP) to genus level, FP to species level, false negatives (FN) to species level, and runtime in seconds. Values indicative of high performance are at the periphery of
the radar plot, values indicative of poor performance are at the center of the plot. a. HMP dataset with even coverage. b. HMP dataset with staggered coverage. c. Virus dataset with even
coverage. d. Virus dataset with staggered coverage. e. Bacterial dataset. f. Human dataset. The MetaPhlAn algorithm failed to run on the human dataset.

the performance of these varied approaches to metagenomic sequence
classification was evaluated on a suite of in silico datasets with perfectly
characterized composition. MetaScope, winner of the Defense Threat
Reduction Agency’s Grand Challenge for identifying organisms from
a stream of DNA sequences (https://www.innocentive.com/
ar/challenge/9933138) relies on sequence analysis using spaced
seeds followed by an augmented least common ancestor algorithm to map
reads and assign genes for input FASTQ samples(13),(7). Kraken(36) uses
exact alignment of k-mers in combination with an optimized database and
another version of the least common ancestors algorithm. MetaPhlAn(28)
relies on unique clade-specific marker genes identified from 3000 reference
genomes. The Livermore Metagenomic Analysis Toolkit (LMAT) exploits
genetic relationships between different organisms by pre-computing the
occurrence of each short sequence across the entire reference database and
storing the evolutionarily conserved sequence patterns(2)-(33). MetaCV
translates nucleotide sequences into six frame peptides, which are then
decomposed into k-mers. The k-mer frequency is computed in a protein-
reference database and used to assign k-mer weights(15). MetaPhyler
uses a precomputed database of reference phylogenetic marker genes to
build a sequence classifier. The classifier, based on BLAST, uses trained
thresholds for various combinations of taxonomic ranks, sequence length,

and reference genomes(14). Finally, One Codex(19) identifies microbial
sequences using a k-mer based taxonomic classification algorithm through
a web-based data platform, using a reference database of 40,000 bacterial,
viral, fungal, and protozoan genomes. In this study, the performance
of these varied approaches to metagenomic sequence classification was
evaluated on a suite of in silico datasets with perfectly characterized
composition.

Simulated in silico datasets are a valuable tool for metagenomic
research and provide capabilities to evaluate algorithm performance as
well as to test hypotheses that cannot be examined through empirical
observation. For example, simulated data has revealed biases and
heterogeneity in the estimation of diversity metrics from metagenomics
samples(5). Additionally, multiple studies have demonstrated the
usefulness of simulated metagenomics datasets for benchmarking
sequence assembly and gene prediction pipelines(17)-(18). Simulated
datasets are also an effective means of parameter optimization for
improved algorithm performance and can be used to optimize study
design. Sequence simulation can aid with answering questions about
coverage requirements, necessary sequence length, and whether paired-
end or single-end sequencing should be used. For example, the ART
simulator was successfully used by the 1000 Genomes Project Consortium
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Fig. 2. Number of correctly assigned reads to each organism at the genus and species level. Heatmap color scales are log10 (number of correctly assigned reads). The “Truth” column
indicates the number of reads spiked into the FASTQ input file for the specified genus or species. a.–e. Reads mapped correctly to the genus level for the HMP even, HMP staggered,
bacteria, virus even, virus staggered datasets, respectively. f. – k. Reads mapped correctly to the species level for HMP even, HMP staggered, bacteria, virus even, virus staggered, and
human datasets, respectively.

to examine the effects of read length and PE insert size on a read’s
ability to map to the human genome(12). In this study, six in silico
datasets were simulated by the FASTQsim tool. Figure S1 illustrates the
composition of each dataset. These datasets contained sequences from
reference bacterial and viral genomes, as most human pathogens are
members of these taxa. The HMP Even and HMP Staggered datasets were
generated to include sequences from the 20 organisms from the Human
Microbiome Project(23) (Supplementary Table S1). The HMP organisms
were selected for inclusion after an attempt to benchmark the performance
of MetaScope with the HMP dataset revealed potential contamination in
the dataset. As the HMP benchmark dataset was generated by sequencing
organisms cultured in vitro, there was no absolute truth for any background

contaminant organisms in the dataset and it was not possible to determine
whether the contamination was real or whether MetaScope was calling
false positive organisms.

The bacterial dataset (Supplementary Table S2) was designed to test
algorithm specificity. Four genera of pathogens were selected from the
National Institute of Allergy and Infectious Diseases (NIAID) list of
biodefense and emerging infectious disease agents (https://www.
niaid.nih.gov/topics/biodefenserelated/biodefense/

pages/cata.aspx) due to their relevance to disease diagnostics from
metagenomics samples. These included Yersinia, Coxiella, Brucella, and
Salmonella. Additionally, the Escherichia genus was added to the list
due to the high abundance of representative sequences in GenBank(4).
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Fig. 3. Relative abundance of organisms to the species and genus level. "Truth" column indicates relative abundance of genera and species added to the in silico FASTQ input file.

For each of the five genera, several representative species were selected
(i.e.,Brucella abortus, Brucella melitensis, Brucella suis). Next, several
representative strains were selected for each species (i.e. Brucella
melitensis ATCC 23457, Brucella melitensis biovar abortus 2308, Brucella
melitensis biovar 1 strain 16M, and Brucella melitensis M28). Organisms
were spiked into a FASTQ dataset with coverage levels ranging from 10x
to 0.00002x (1 read).

Two virus datasets were generated with 21 species across 11
representative genera (Supplementary Table S3). As with the bacterial
dataset, candidates were selected due to their inclusion on the NIAID list
of emerging pathogens (Marburg virus, Machupo virus, Sudan ebolavirus,
Junin virus, Guanarito virus, Chapare virus, Omsk hemorrhagic fever
virus) as well as abundance of representative organisms in GenBank (HIV1,
HIV2, Influenza A virus). For the Virus Even dataset, 10x coverage of each
organism was simulated. For the Virus Staggered dataset, coverage varied
from 100x for Sudan ebolavirus to 0.5x for the Human coronavirus HKU1.
Finally, a dataset of human reads from build GRCh38 at 10x (22 million
reads) coverage was generated to test host-filtering capabilities of each
algorithm. This dataset was generated to measure how well algorithms
can overcome the challenges posed by human sequence contamination
in public reference databases(8). For example, endogenous retroviral
remnants may be incorrectly classified as belonging to viral genomes in a
sample(6)-(29).

Table 1. Radar plot area in normalized units across six evaluation datasets. Area
with runtime excluded is indicated in parentheses.

Dataset Human Vir. Stag. Virus Even Bacteria HMP Stag. HMP Even Area Sum
One Codex (2.37) (2.37) (2.37) (2.052) (2.31) (2.31) (13.8059)
MetaScope 2.54(2.37) 1.9(1.38) 2.14(1.47) 2.23(1.99) 2.03(1.57) 2.32(1.847) 13.15(10.65)
Kraken 1.64(1.34) 2.36(1.63) 1.21(1.63) 1.75(1.48) 1.9(1.44) 1.76(1.32) 10.62(8.85)
LMAT 1.41(1.12) 2.45(1.69) 2.25(1.41) 1.38(1.10) 1.46(1.00) 1.59(1.16) 10.54(7.85)
MetaPhlAn 0.48(0.58) 0.99(0.58) 2.25(1.99) 1.88(1.49) 2.02(1.66) 7.62(7.85)
MetaCV 0.82(0.52) 0.09(0.34) 0.14(0.034) 1.43(1.17) 1.25(0.87) 1.08(0.62) 4.8(3.57)
MetaPhyler 1.88(2.37) 0.6(0.58) 0.09(0.58) 0.67(0.68) 0.57(0.62) 0.63(0.62) 4.44(5.47)

2 Results and Discussion
Runtime in seconds, true positive genus and species identification, false
positive genus and species identification, and false negative species calls
were determined for each of the metagenomic algorithms (Figure 1).

Among the algorithms evaluated, only MetaScope and One Codex
mapped a small number of reads in our datasets to a taxon rank below
species. Consequently, although the initial focus of the Bacterial dataset
was to assess the ability of the algorithms to distinguish between different
strains of the same species, it was decided to evaluate both true and false
positives at species and genus level. To determine an overall rank of the
algorithms across the datasets, the area occupied by each in the radar plot
was computed (Table 1). The One Codex results were submitted by the
algorithms’ authors after the initial release of this manuscript to bioRxiv,
and consequently runtime information/radar plot areas are not presented
for this algorithm.
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When the polygon area was calculated using the MATLAB polyarea
function and summed across all datasets, MetaScope emerges as the
winner, with the largest overall area. Kraken and LMAT are the runner-
ups, and MetaPhyler performed the worst. If runtime is excluded from
the polygon area calculation, One Codex emerges as the winner, followed
by MetaScope. In addition to the algorithms’ rank overall, several trends
can be noted in the individual performance categories. The algorithms
diverged in runtime by several orders of magnitude (Table 2). Overall,
MetaPhlAn had the shortest runtime. The algorithm had the fastest time
on the three bacterial datasets – 22.64 s for HMP Even, 53.3 s on HMP
staggered, and 220 s. on Bacteria. The second fastest times for these three
datasets were 5 to 10 times slower: 233 s (MetaPhlAn), 261 s (MetaScope),
and 2,700 s (LMAT), respectively. MetaPhlAn is able to execute quickly
partly because it does not perform a host-filtering step. MetaPhlAn came
in second for the virus datasets, with a runtime of 11 seconds on both,
compared to 9 and 7 seconds for Kraken. MetaPhlAn failed to run on the
human dataset. Kraken, MetaScope, and LMAT exhibited similar runtimes
on all datasets, averaging 353 s on HMP Even, 354 s on HMP staggered,
and 3,595 s on Bacteria. On the other end of the spectrum, MetaPhyler
was an outlier for high runtime, requiring 15,480 s on HMP Even, 19,231
s on HMP staggered, and 129,600 s on Bacteria. In addition to its high
speed, MetaPhlAn also achieved the highest accuracy, defined as ratio
of true positives to false positives, on the bacterial datasets. It identified
all 20 species in the HMP even dataset with only a single false positive
organism. On HMP staggered, it missed 4 species out of 20 but reported
only 2 false positive species. MetaScope, the runner up, reported a single
false negative species but 414 false positives. However, the MetaPhlAn
reference database is customized for bacteria, and no support exists at
the time of this writing for profiling viruses or eukaryotes. MetaScope
achieved the second- highest ratio of true positives to false positives,
reporting slightly more true positives and approximately half as many
false positives as Kraken. LMAT was the least conservative and reported
the highest number of false positive organisms. MetaPhyler made highly
conservative calls – false positives were low, but so were true positives.
Additionally, MetaPhyler, and MetaCV, as well as MetaPhlAn, did not
report results for the viral datasets. Algorithm performance on the Human
dataset (Figure 2k) illustrates the efficacy of the host-filtering step for each
algorithm. The human reference genome is incomplete(1),(31) and misses
regions specific to individual host subjects. These missed regions show
up as false positives on the Human evaluation dataset – algorithms assign
them to organisms other than the human host because these reads are not
removed during the host filtering step. For example, One Codex reported
two false positive organisms (but with only 1 read each), illustrating
excellent host-filtering capabilities. MetaScope reports 152 organisms,
with fewer than 100 reads assigned to each. Kraken has a similar false
positive profile; it reports 1,266 species that account for <1% of the reads in
the dataset. MetaCV reports 2,998 false organisms with low read count, and
LMAT reports 1,118 species that account for less than 0.01% of the reads.
MetaPhyler does not report results more specific than the Class taxonomy
level for the Human dataset, in line with the conservative approach of this
algorithm. MetaPhlAn crashes with a segmentation fault on the Human
dataset, which most likely is an artifact of the non-host-filtering approach
used by this algorithm.

The algorithms were evaluated based on their ability to correctly map
reads and predict relative abundance of the organisms in the data (Figures
2,3). For the bacterial datasets, Kraken, One Codex, and MetaScope
classified the highest number of reads correctly for both the genus
and species level, and cluster closest to the truth in the dendrogram.
However, for the viral datasets, LMAT performed best, classifying the
most reads correctly, followed by One Codex. Although the Actinomyces
odontolyticus (NZ_DS264586.1) organism had the highest coverage
(11.3x, 217512 reads) in the HMP staggered dataset, the algorithms on

Table 2. Algorithm runtime in seconds across six evaluation datasets.

Dataset Human Vir.
Stag.

Vir.
Even

Bact. HMP
Stag.

HMP
Even

MetaScope 2160 327 427 3686 261 233
Kraken 600 7 9 4400 300 400
LMAT 2428 20 39 2700 502 427
MetaPhlAn Seg

Fault
12 12 220 53 23

MetaCV 3873 120 150 11966 2337 1322
MetaPhyler 25200 2640 3100 129600 19231 15480

the whole did not perform well on this organism. It was not identified by
the Kraken, MetaCV, and MetaPhyler algorithms, and called at a low level
by MetaScope (153 reads) (Figure 2g) MetaCV mapped the most reads
correctly –108,211 (49.7%) and MetaPhlAn was second best, identifying
22,647 (10.4%) of the reads. None of the algorithms identified any of the
2,045 A. odontolyticus genes (Figure 4b). This poor performance likely
results from the fact that A. odontolyticus genome annotation in GenBank
is incomplete(27).

Conversely, at the species level, six of the seven algorithms mapped
a high number of reads to Streptococcus agalactiae for both the HMP
even and HMP staggered datasets (Figure 2f, 2g), but only a small
number of reads for this organism were present in the truth data. The
relative abundance of Streptococcus mutans is lower in the algorithm
calls as compared to truth, while the relative abundance of Streptococcus
agalactiae is higher, suggesting that a number of the reads called for
S. agalactiae are actually from S. mutans (Figure 3b, 3d). This implies
difficulty distinguishing between closely related species. Similarly, a high
number of reads are assigned correctly to the Yersinia and Escherichia
genera by Kraken and MetaScope (Figure 2c.) However, the algorithms
under-assign reads for Escherichia albertii and over-assign reads for
Yersinia pseudotuberculosis, which indicates difficulty in distinguishing
between these species (Figure 2h). Overall, algorithms were equally
as able to identify organisms in the staggered datasets as in the even
datasets, suggesting that accurate read mapping depends more on the
database supplied to the algorithm rather than the abundance of the
organism in the dataset. Additionally, for the bacterial datasets, Kraken,
MetaScope, LMAT, and MetaPhlAn generally agreed on read mapping
assignments. However, for the viral datasets, the algorithms missed
different sets of organisms – i.e., in Figure 3i, LMAT failed to map reads
for HIV1, Influenza A virus, Marburg virus, and Machupo virus, whereas
MetaScope and Kraken correctly mapped reads for these organisms.
However, MetaScope and Kraken both failed to map reads for Human
papillomavirus 5, SARS coronavirus, Human papillomavirus 32, and
Canine papillomavirus 3, while LMAT succeeded in mapping reads
for these organisms. This suggests that for viral datasets, it might be
worthwhile to execute both LMAT and one of Kraken or MetaScope, and
calculate the union of the results.

The algorithms were also evaluated based on false positive hits (Figure
S2). MetaCV and LMAT have diverse error profiles – small numbers of
reads are mapped to a high number of false positive organisms. Our past
experiences with the MetaScope algorithm suggest that this false positive
profile indicates an algorithm has difficulty classifying organisms that
are not present in the reference database. Ideally, when an algorithm
encounters a novel organism, it should regress up the taxonomic tree
until a nearest neighbor for the unknown organism can be established.
However, the algorithm may instead report all reference organisms that
match the unknown sample to a certain threshold. In contrast, Kraken
has a highly concentrated error profiles; fewer than 20 false positive
organisms are reported, but several thousand reads are mapped to each of
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Fig. 4. Number of genes correctly identified to the species level across the 5 evaluation datasets (the 6th evaluation dataset consisting of human host reads is not shown). âŁœTruthâŁž
column indicates the number of genes with non-zero read coverage in the dataset. MetaScope, MetaCV, and LMAT algorithms provide gene assignment capabilities; Kraken, MetaPhyler,
and MetaPhlAn do not call genes and were not included in this evaluation.

them, suggesting high confidence calls. Figure S2c and S2d summarizes
the top 20 organisms in terms number of mapped reads, indicating
high agreement between Kraken and MetaScope. On the list of false
positive genera are several members of the Enterobacteriaceae family,
including Shigella, Klebsiella, and Enterobacter. The true positive genera
Salmonella, Escherichia, and Yersinia are members of this family as well.
More difficult to explain is the presence of the Methanolobus genus, which
is a member of the kingdom Archaea and is distantly related to the bacteria
in the truth data. For the viral datasets, MetaCV returned a high number
of false positives and exhibited poor performance. LMAT, One Codex,
and MetaScope did not report any false positive organisms for either viral
dataset.

Finally, the gene calling capabilities of the algorithms were evaluated
(Figure 4). Only MetaScope, LMAT, and MetaCV call genes, so these three
were included for analysis. For the HMP Even/Staggered, Bacteria, and
Virus Staggered datasets, MetaScope identified the most genes correctly
out of the three algorithms. LMAT identified more correct genes on the
Virus Even dataset (101, compared to 93 for MetaScope).

3 Conclusions
In summary, in silico datasets with known truth data for read and
gene distribution across different taxons serve as a valuable tool for
evaluating algorithm performance. The HMP Even/Staggered, Bacteria,

Virus Even/Staggered, and Human datasets generated with FASTQsim
elucidate multiple patterns in performance for leading metagenomics
algorithms. No algorithm out performed the others in all categories, and
the algorithm of choice strongly depends on analysis goals. For bacterial
datasets, MetaPhlAn is a clear winner, achieving the lowest runtime,
highest ratio of true positives to false positives, and the most precise read
mapping. However, MetaPhlAn does not assign genes and does not work
on taxons other than Bacteria. LMAT and One Codex were winners on
the viral datasets in terms of accuracy, and LMAT also provides gene
calling functionality. LMAT and One Codex algorithms most closely
matched the relative abundance profile of the truth genera and species
across all datasets. However, LMAT also reported the highest rate of
false positive genera and species calls on the bacterial datasets. Kraken
and MetaScope were the runners up in terms of runtime, ratio of true
positives to false positives, and read mapping. MetaScope also performed
best for gene mapping, which Kraken does not do. These algorithms
performed solidly across all categories evaluated and can be applied most
universally across versatile metagenomic applications. MetaPhyler and
MetaCV came in last for runtime, ratio of true positives to false positives,
and read mapping. They also do not provide results out of the box for viral
datasets. Although viral, bacterial, and human datasets were simulated
for this study, the techniques described here can be extended to evaluate
metagenomic algorithm performance for other taxa. For example, fungal
contamination incidents at medical facilities such as the 2012 incident at
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the New England Compounding Center(35) can be contained more quickly
and effectively with the aid of metagenomic sequencing. Other potential
applications include rapid diagnosis of parasite infections(22).

4 Methods

4.1 Improvements to FASTQsim

The FASTQsim toolkit was augmented to annotate gene information for
simulated reads(30). The "FASTQmapGenes" functionality was added,
allowing users to specify NCBI accession ids to use for annotating gene
information in simulated reads. The FASTQsim toolkit uses the Entrez and
SeqIO libraries from BioPython(9) to download the specified files from
GenBank in .gb format. The GenbankParser (https://github.com/
doricke/BioTools/tree/master/GenBankParser) Java application
is then used to parse the .gb files in order to extract all information encoded
in the CDS and Gene tags. These gene and CDS annotations are appended
to the headers within the simulated FASTQ files generated by FASTQsim,
such that all reads that fall within a CDS or gene region are annotated with
the corresponding CDS and gene information.

4.2 In silico data generation

The FASTQsim toolkit was used to generate six in silico datasets.
All were generated with the Illumina error and read length profile
included with FASTQsim version 2.0, with no host background added.
Specifically, read length of 150 bases was used, with single base
mutation, insertion, and deletion rates as specified in the FASTQsim
v. 2.0 documentation http://sourceforge.net/p/fastqsim/

code/ci/master/tree/params/illumina/. NCBI identifiers
for all input data are listed in Supplementary Tables S1-3. The commands
used to generate the datasets are listed in Supplementary File 1. The Krona
toolkit(24) was used to visualize evaluation dataset composition. Two
in silico datasets were generated – "HMP Even" and "HMP Staggered"
(Supplementary Table 1). For the HMP even dataset, FASTQsim was
executed to provide equal number of reads for each species of organism
(approximately 60,000 reads per species), with one exception – 559
reads for Streptococcus agalactiae were added to simulate a low-
level contaminant organism. Version 2.0 of the FASTQsim algorithm
probabilistically simulated read counts and error distributions based on a
provided model. Due to the probabilistic nature of the algorithm, coverage
levels deviated slightly from the specified 60,000 reads, with the largest
deviation observed for the E. faecalis organism (52,290 reads). For the
HMP Staggered dataset, coverage levels varied from 11.3x (217,512
reads) for Actinomyces odontolyticus to 0.001x (2 reads) for Neisseria
meningitidis. The goal of the staggered dataset was to evaluate the
ability of metagenomic algorithms to detect organisms present at very
low concentrations, i.e. less than 5 reads.

The bacterial dataset included reads from the genear Yersinia, Coxiella,
Brucella, Salmonella, and Escherichia. For each of the five genera, several
representative species were selected (i.e., Brucella abortus, Brucella
melitensis, Brucella suis). Next, several representative strains were
selected for each species (i.e. Brucella melitensis ATCC 23457, Brucella
melitensis biovar abortus 2308,Brucella melitensis biovar 1 strain 16M,
and Brucella melitensis M28). Organisms were spiked into a FASTQ
dataset with coverage levels ranging from 10x to 0.00002x (1 read).

For the Virus Even dataset, 10x coverage of each organism was
simulated. For the Virus Staggered dataset, coverage varied from 100x
for Sudan ebolavirus to 0.5x for the Human coronavirus HKU1.

4.3 Metagenomic algorithm execution

Six metagenomic algorithms were selected for execution on the evaluation
datasets. These included:

• MetaScope – winner of the Defense Threat Reduction Agency’s Grand
Challenge(7) (version 2.0)

• MetaPhlAn(28) (version 1.7.8, https://bitbucket.org/

nsegata/MetaPhlAn/src/),
• MetaCV(15) (version 2.3.0,http://sourceforge.net/projects/

metacv/files/),
• MetaPhyler(14) (version 1.13, http://MetaPhyler.cbcb.

umd.edu/#download),
• Kraken(36) (v0.10.5, https://ccb.jhu.edu/software/

kraken/),
• LMAT(2)-(33) (v1.2.5,http://sourceforge.net/projects/

lmat/).

All algorithms were executed on each of the evaluation datasets using
a machine with 512 GB of RAM, 64 cores, 1 TB hard drive, running the
Fedora 17 operating system. All algorithms were executed with the default
set of databases described in their respective documentation, downloaded
on March 1, 2015. The commands used to execute all algorithms are
listed in Supplementary File 2. Algorithms were evaluated using 60 of
the 64 available cores. Attempts were also made to install and run the
SURPI (v1.0, https://github.com/chiulab/surpi)(21) and
compressed BLAST (v0.9, http://cast.csail.mit.edu/)(10)
algorithms, but these were unsuccessful.

4.4 Algorithm performance evaluation

Runtime in seconds, true positive genus and species calls, false positive
genus and species calls, read mapping, and relative abundance results at the
species level were computed for all algorithm results. Additionally, correct
gene calls were calculated for the set of algorithms that provided gene
calling results (MetaScope, MetaCV, LMAT). The Gene ID Conversion
function in the DAVID Bioinformatics Database(11) was used to convert
across gene representation formats utilized by the three algorithms. Genes
were marked as true positives if they matched the gene id, official gene
symbol, locus tag, protein id, or specific product name of the truth data.

5 Availability of supporting data
The FASTQsim toolkit can be downloaded from SourceForge: http:
//sourceforge.net/projects/fastqsim/

In silico evaluation datasets can be downloaded from the Sequence
Read Archive: SRP062063

• SRR2146185 – Virus Staggered dataset
• SRR2146184 – Virus Even dataset
• SRR2146183 – Bacterial dataset
• SRR2146181 – HMP Staggered dataset
• SRR2146182 – HMP Even dataset

6 List of abbreviations
• GB - gigabyte
• RAM – random-access memory
• s – seconds
• TB – terabyte
• x – fold coverage
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